
AD-AI12 096 NAVAL SURFACE WEAPONS CENTER DAlLGfEN VA FIG 9/2
COMPUTER PROGRAMMING AND COOING STANDARDS FOR THE FORTRAN AND S--ETC(U)
DEC 81 R T BEVAN. i N REYNOLDS

UNCLASSIFIED NSWC-TR-878 N* umuuuuobiiIomhI
111111

IhhhhmomhlE

11111 .0 I' I ' *

€2.511111L2 Ji.1 L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I II I I I II n..1l

* 0

82 03 17 i0 4
.,.

- 4.*. .4

1 TNrT.A.qT 1FT1) "

SECURITY CL.ASSIFICATION OF THIS PAGE Mhopp Doa snoed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER . GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMBER

TR-3878 7L,_,_____________

4. TITLE (And Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Computer Programming. and Coding Standards for Final
the FORTRAN AND SIMSCRIPT 11.5 Programming 4. PERFORMING OaG. REPORT NUMBER

Languages

7. AUTNOR(@) S. CONTRACT OR GRANT NUMBER(*)

Robert T. Bevan
John H. Reynolds

9. PERFORMING ORGANIZATION NAMIE AN ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Surface Weapons Center (K51) N0003079WR92417

Dahlgren, Virginia 22448 9K5OTR001

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Surface Weapons Center (K51) ."uNmERoF AGES

Dahlgren, Virginia 22448 73
14. ONITORING AGENCY NAME % AODRESS(II difften from Controiinl Office) 15. SECURITY CLASS. (of ts tepoMrt)

UNCLASSIFIED

IS. DECLASSIFICATION/ 0OWNGRADING

is. SISTRIeuTON STATEMENT rot tis Ropeft)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Stock 30, it dJormt fomi Roert)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Ceninue sit reveree ode It noeooery slid idmntI by block mmet)

Standards, FORTRAN, SINSCRIPT 11.5, Computer Programming Standards, Coding
Standards, Software Engineering, Structured Programming, Software Develop-

4 ment

20. ABSTRACT (CoaitiRM reverse side It aeaoaap 4101 idevillfp by blook amr)

>rhe omputer programming and coding standards included in this report
are meant to provide a general purpose set of standards for use at the Naval
Surface Weapons Center,tN&WC-)c

Contemporary studies of the software development process have shown de-
finitively that an "d-hoc" attempt at developing large and complex program-
ming systems yields software that is too expensive, too difficult to main- -

DO I ,o57 1473 EItoN Op i NOV es IS OBSOLIETEa UNCLASSIFIED
|/M 0 10 2- 014-" 1 1 SECURITY CLASSIFICATION OF Twll PAGE (le Be4a BieWe

;!M

UNCLASSIFIED
.1 I.,.TJqIY CLASSIFICATION OF Tr"I4 PAG 1tWI,., Dle Saterd)

20. tain, inefficient, and, often, incorrect. Worse, it is very difficult
to ensure that it is correct.

This report deals with standards that make the development of pro-
grams a more precise process. This does notmean-t6imply that use of
a rigorous set of programming standards is a panacea for computer pro-
gramming. On the contrary, use of standards merely reduces the number
of errors introduced. Using standards such as those documented in this
report will be seen to>require more effort on the part of the program-
ming staff than heretofore. This effort is not in vain, however, since
the additional effort consists of tasks that were imp--not done in
the approaches of the past. Additionally, standards greatly improve
the reliability, maintainability, and transportability of the resultant
software.

One final point should be made:" use of the most rigorous set of
programming standards does not restrict the creative process; ft sim
ply defines a consistent, organized, understandable procedure that
simplifies the mundane tasks that are associated with the programming
discipline, thereby freeing the programmer to design.

i

UNCLASSIFIED
SRCURIY CLASSIFICATION OF ?HIS PAO4(IR.e O ma 8wPr

.MM IX

FOREWORD

This document was written in the Systems Simulation Branch (1(51), Subma-
rine Launched Ballistic Missile (SLBH) Software Development Division, of the
Strategic Systems Department at the Naval Surface Weapons Center (NSWC),
Dahlgren, Virginia.

This report documents a general purpose version of programming and coding
standards that were originally written during the development of two large-scale
simulation programs for the SLM Research and Analysis Division (K40) and the
SLEM Software Development Division (K50). It is a revision of NSWC TR-3878,
April 1980.

This document was reviewed by Mr. Ira V. West, Head, Systems Simulation
Branch, of the SLU Software Development Division, and Mr. Robert L. Allen, Head,
SLBM Software Development Division.

Re Nase:

R. T.R ,JR., ead
Strategic Systems partment

Accession For

NTIS GRA&I
DTIC TAB

• , .1 I Ju,:t if'i c t i c

U CKPy) "t

.--": " "-: -~t
" C: es

iiiI

ACKNOWLEDGEMENT

Although the basic computer programming and coding standards of this report
were developed to support specific Submarine Launched Ballistic Missile (SLBM)
weapon system simulations, many suggestions for improvement have been made and
incorporated.

The personnel of the Systems Simulation Branch (K51) of the SLBM Software
Development Division (K50) were instrumental in proving the worth of these stand-
ards when applied to large-scale system simulation development, as well as to
projects unrelated to those for which they were developed. Their suggestions for
improvements were valuable and appreciated. For example, the "code reading" pro-
cedure of Appendix F was developed by Georgene B. Burton, a former member of K51.

The Physical Sciences Branch (K14) of the Space and Surface Systems Divi-
sion (KIO) has also reviewed and recommended changes to this document to make it
more general purpose. Those recommendations are included.

In order that these standards evolve into a tool that can be applied even
more broadly, continuing suggestions from personnel actually applying these
standards are essential and welcome. Of special importance are those areas
of the standards that others cannot directly use for various reasons. Experience
dictates that many times those reasons indicate that a change is in order that
will benefit others.

With that in mind, the authors invite and solicit further recommendations
for improving the worth of this document.

iv

CONTENTS

Page

I. INTRODUCTION............................I

II. DESIGN. 2

A. Need For Design.........................2
B. Design Procedure 2

III. MODULARITY. 2
A. Functional Separation of Algorithms...............3
B. Top Entry/Bottom Exit.......................3
C. Size Limitation........................3
D. Data Transfer 3

IV. CONTROL 3
A. Program Integrity. 4
B. Duplication of Effort. 4
C. Version Capability 4

V. MACHINE INDEPENDENCE. 4

VI. USER-ORIENTATION. 5

VII. DOCUMENTATION 5
A. In-line 5

I. PROLOGUE. 6
2. Interspersed. 6

B. Formal. 6
1. Functional Description (FD). 6
2. Data Requirements Document (RD) 7
3. System/Subsystem Specification (SS) 7
4. Program Specification (PS) 7
5. Data Base Specification (DS). 7
6. Command/Management Manual (CM) 7
7. Computer Operation Manual (OH). 7
8. Program Maintenance Manual (MM). 8

9. Project Manual (PM). 8

VIII. GENERAL CODING CONVENTIONS. 8
A. Program Layout. 8

1. PROLOGUE Documentation 8
2. Specification and DATA Statements (FORTRAN only) . . 11

A) COMMON data (with appropriate types) 11
B) Local DIMENSIONs (with appropriate types) 1
C) DATA statements............... . . 11

v

CONTENTS (Cont'd)

Page

D) Statement Functions 11
E) FORMATs 11

3. Coding 11
B. Structure 11
C. Readability 12

1. Mnemonic Usage 12
2. Generating Readable Listings 14
3. Statement Label Usage 15

D. Linkage/Communication 16
I. Subroutines Versus Functions 16
2. Parameter Lists 17
3. Global/COMMON Variables 17

IX. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS . . . 18
A. Alphanumeric Data 18
B. Assignment Statements 18
C. Branching 18
D. Code Per Se 19
E. DO loops 22
F. Documentation 22
G. IF Statements 23
H. Input/Output 23
I. Naming Conventions (General) 23
J. Naming Conventions (COMMON) 23
K. Program Control Labels 23
L. Linkage 24
M. Specification and Data Statements 25

1. Labeled COMMON 25
2. Blank COMMON 26
3. Type Statements 26

4. DIMENSION Statements 26
5. DATA Statements 26
6. FORMAT Statements 27
7. EQUIVALENCE 27

N. Subprograms 27

X. SPECIFIC SIMSCRIPT 11.5 CODING CONVENTIONS AND
CONSTRAINTS 28
A. The PREAMBLE 28
B. Coding Standards 29
C. Indenting Source Code 30
D. Debugging Aids 33

vi

____ ____ ___ ____ ____ ___ __w.___

tt

CONTENTS (Cont'd)

E. Files/Units 34

F. Documentation Conventions 34

XI. CONFIGURATION MANAGEMENT' 35

References 36

Appendix A -- Sample FORTRAN Subprogram A-I
Appendix B -- Sample SIMSCRIPT 11.5 Subprogram B-i
Appendix C -- Recommended Structure and Format For

CDC UPDATE Program Libraries C-i
Appendix D -- Simulated FORTRAN Structured Constructs . . D-1
Appendix E -- PDL Conventions E-1
Appendix F -- Code-Reading "Structured" FORTRAN

Programs F-i

Distribution

vii

I. INTRODUCTION

This document applies to computer programs that may be coded using

either of two programming languages, FORTRAN and SIMSCRIPT 11.5.

Both languages are implemented on the CDC 6700/CYBER 74 Computer Systems

at the Naval Surface Weapons Center, Dahlgren, Virginia. The CDC version of
FORTRAN is called "FORTRAN Extended." Some of the examples in this document
assume the syntax of "FORTRAN Extended."

Throughout this report, several terms are used which may mean different
things to different readers. In this report, the following meanings apply:

PROGRAMMING PROJECT MANAGER - The highest level technical person who is

respons;ole for the correct implementation of a system of programs

MODULE - A procedure in the system of programs (synonymous with subpro-
gram, routine, subroutine, or function)

SUBSYSTEM or FUNCTIONAL AREA - A collection of modules

EXECUTIVE - The highest level module which controls the flow through all
lower level modules

MODEL - The mathematical representation of a subsystem or functional
area as encoded

WALK-THRU - A design review attended by several members of the devel-
opment team

STUBS - Dummy routines which "stand in" for actual modules and are
used to allow testing of entire configurations before all actual modules
are coded

Although this document supports contemporary software engineering tech-
niques, it does so without defining them with academic precision. For example,
the term "structured programming" may mean to some readers that only the prime
constructs DOWHILE, IFTHENELSE, and SEQUENCE are used when writing a program.
To others, it connotes the stepwise refinement process necessary to decompose
a specification into more manageable partitions prior to coding. Both view-
points are correct and thus the term as used throughout this report denotes a
label for a collection of techniques that can be systematically applied to pro-
duce rigorous programmed solutions to problems.

The following concepts shall be used when writing programs to be included
as part of any program to which these standards apply (actual requirements are in
Zight italics).

ri

zI

$,4o

II. DESIGN

A. Need for Design

A complete and accurate design is a critical requirement for a large pro-
gramming system. Given a complete "system specification," in which all the
requirements of the system are defined by the sponsor, the responsibility for a
well-designed program lies with the programmer.

The projects to which this document applies shall use a "top-down" design
approach, wherein all the requirements of the system are completely specified and
designed before actual coding begins.

As a tool in defining and documenting the design, a Program Design Lan-
guage (PDL) shall be used. A PDL is a structured, pseudo-programming language
that allows one to specify design information at a high level (lots of English
text), an intermediate level (some text, some structured programming constructs),
or a very low level (close to a one-to-one correspondence to actual code).

The PDL to be used is that of Caine, Farber & Gordon, Inc. (see Refer-
ence 1). This PDL is similar to several others currently in use and was chosen
because it also has a processor that indents and aligns the PDL statements for
a neat, readable document of a given design.

B. Design Procedure

For each flunctional area aid the nvdules within, the following procedure
shall be used:

1. Programmer designs module.
2. Programmer writes PDL.
3. Colleague(s) reads PDL for correctness, understanding, and read-

ability.
4. Iterate steps 1-3 until satisfactory.
5. Colleagues attend "walk-thru" of designs of an entire functional

area.
6. Iterate steps 1-5 until satisfactory.
7. Begin coding of PDLs.
8. Colleague(s) reads code to insure correctness (see Appendix F).
9. Testing of functional areas begins within the executive structure

(using "stubs" for code not vet completed).
10. Initial Operational Capability (IOC) achieved.

III. MODULARITY

Modularity is a concept that allows systematic development of programs as
.i ja set of interrelated individual units (called modules) which can be tested sep-

arately and later linked together to form a complete program.

2

V

Given a modular approach, the "program design" stage prior to coding be-
comes the most critical function. A "top-down" examination of the overall system
must be taken so that the interfaces among modules are resolved before coding at
lower levels begins.

The following attributes of modular programs shall be maintained:

A. Functional Separation of Algorithms

1. Each algorithm in a separate module
2. All input statements for a subsystem in one module
3. All output statements for a subsystem in one module
4. All error-handling code in one module
5. All general purpose code isolated in separate modules

B. Top Entry/Bottom Exit

Each subprogram shall have one entry point (top) ad one exit point
(bottom) and utilize "structured programing" techniques. (Note: for FORTRAN,
the "pseudo-structures" of Appendix D must be used; the SIMSCRIPT 11.5 pro-
gram ing language supports structured programming.)

C. Size Limitation

Each subprogram shall be maintained as small as feasible (this is a natural
result of functional separation of algorithms and needs to be artifically imposed
only rarely). Routines exceeding two pages of code sust be approved by the Pro-
graming Project Manager {these two pages do not include PROLOGUE comments (see
Section VII, Documentation) or Specification and Declarative statementsl.

D. Ds - Transfer

Use of argument lists ("call lines") is the preferable way to transfer data
from routine to routine in order to maintain autonomy. However, there frequently
exist cases where argument lists become prohibitively large; in these cases the
use of FORTRAN COMMON or SIMSCRIPT "global" storage may be required.

IV. CONTROL

A person responsible for each program (or set of programs), knom as a
"control point," nust exist. There shall be a control point for each program in
addition to a "master" control point for the overall system of programs.

Control over programs and associated files shall be implemented through the
use of a general purpose symbolic file maintenace program. For example, on Con-
trol Data Corporation (CDC) 6000 Series Computer Systems, the UPDATE program (seeReference 2).

3

The purpose of each control point is to insure adherence to the following
concepts:

A. Program Integrity

Program integrity must be maintained through control. Unless one person is
completely aware of modifications to a given program (or set of programs), pro-
gram confidence is destroyed and versions proliferate.

B. Duplication of Effort

DUpZication of effort must be eliminated by insuring that a capability to
perform a task does not already exist before the task is implemented.

C. Version Capability

Although many versions of given programs do not differ enough to be justi-
fied, there are legitimate cases where more than one version of the object code
is necessary.

Given a modular approach, one can "build" a given configuration (version)
from the basic modules. For example, perhaps three different algorithms are re-
quired (for different applications) to perform a given task. Since all algo-
rithms are isolated and compatible (interfaces resolved), only the one algorithm
necessary for a given configuration need be loaded into the computer. By loading
(and not having "option branching") the storage necessary for the "code" of the
unneeded algorithms is saved. Also, as with "option branching," there is no
penalty in execution time.

Whn all versions of a routine are required in memory simultaneously,
"option branching" shall be used as opposed to maintaining several separate ver-
sions of the entire program.

V. MACHINE INDEPENDENCE

It is important that computer programs be written so that they may be exe-
cuted on systems other than the one they were written for with a minimum of
effort. Even if they are never transported, internal computer system upgrades
are inevitable. K.

Therefore, '"on-standard" features of the compiler shall be avoided. For
example, use of such trivial FORTRAN options such as (1) comment cards with a
"$" in column one and (2) seven-character names, will not be allowed.

However, there frequently arises the need to execute an algorithm that
would require assembly language coding (certainly a non-standard feature) if "ex-
tended" features of the language were not used. Use of these features is far
more preferable than the use of assembly language; for example, (1) use of
FORTRAN I/O for random (direct) access files, and (2) use of FORTRAN ENCODE/
DECODE for packing and unpacking data.

4

..______ __ _ _ __ _ _

Use of any of these features must be approved by the Programming Project
Manager.

In addition, when these features are required and cpproved, they shall be
documented as 'on-standard features" in the program document and in the code per
se via comments.

VI. USER-ORIENTATION

It should be remembered that in order for a given program to have value it
must be useful. In order to be useful it must be written with the user in mind.
Complex input and output make it extremely difficult for the user to run the
program.

Input shall be well defined and simple and allow the user as much freedom
as possible. For example, allowing for "default" conditions so that the user's
input is minimized; storing frequently used data on a file accessible by the
user, rather than the user having to supply it every time.

Output shall be clearly labeled and readable and be structured so that the

user nay suppress unwanted output.

VII. DOCUMENTATION

One of two problems usually exists regarding computer program documenta-
tion: (1) it doesn't exist or (2) it exists but is out of date. (The problem of
multiple versions makes keeping documentation up to date very difficult.)

The solution to these problems is concurrency--documentation must be
written concurrently with program development in order for it to be accurate and
available when checkout is complete.

In addition, when possible, documentation shall be stored in the computer

system. It may then be accessed via computer assisted documentation techniques.

Two types of documentation are required:

A. In-line

This documentation is that which appears in the program code itself.
Normally neglected as consuming too much time, it is a valuable aid to one at-
tempting to understand the program. It is of greatest benefit only if done
concurrently. The overall review process, from preliminary review during the
design (PDL) phase through final code reading, is most important in insuring
that the documentation is current, understandable, and correct.

5

The terminology used in in-line documentation (comments) must be that of
the system being represented, and not of the program itself. For example, one
should say "check for boundary conditions", and not, "check to see if alpha >
beta".

Two types of in-line documentation are required:

1. PROLOGUE

This comment code appears at the very start of every subprogram. See Sec-
tion VIII and the sample programs of Appendices A and B for the format of
PROLOGUEs.

2. Interspersed

This comment code defines the executable code itself. Each comment shall
be aligned with the code constructs and not begin with a 'reserved" structured
programming keyword (e.g., DOWHILE), unless, of course, that keyword is being
used as part of a structured construct of Appendix D.

For example, in FORTRAN,

C CHECK NUMBER OF FRAGMENTS AGAINST MAXIMUM
IF (.NOT.(NOFRAG .GT. MXFRAG)) GO TO 1000

CALL ERROR (ICODE)

1000 CONTINUE

C ENDIF

B. Formal

This documentation includes all reports necessary to adequately define the
system. Several types of documentation are required (each of which may be sepa-
rate documents if the system size or application so dictates). The types of
documents required are dictated by the Department of Defense "Automated Data
System Documentation Standards Manual" (4120.17-M). The names of each type of
document and a brief description follow:

1. Functional Description (FD)

The FD reflects the initial definition of a programming project and pro-
vides the ultimate users with a clear statement of the operational capability to
be developed. It provides a basis for mutual understanding between the develop-
ment group and the user group and should be written in non-computer-oriented
language.

6

2. Data Requirements Document (RD)

The RD defines the input required of the user, the procedures to be fol-
lowed to provide this input to the system, the description of the expected output
data, the specification of all use of standard data elements, and the data limi-
tations of the system.

3. System/Subsystem Specification (SS)

The SS guides the development of large projects for systems personnel. It
provides detailed definitions of the system/subsystem functions, communicates
details of the ongoing analysis to the user's operational personnel, and defines
in detail the interfaces with other systems and subsystems.

4. Program Specification (PS)

This document describes the program design in sufficient detail to permit
program production by the programmer/coder. Included as a part of this type is
the "Prograun Design Language (PDL). "

5. Data Base Specification (DS)

The DS must be prepared when many analysts and programmers will be invol-
ved in writing programs that will utilize the same data. It describes the
storage allocation and data base organization and provides the basic design
information necessary for the construction of the system files, tables, diction-
aries, and directories.

6. Command/Management Manual (CM)

The CM presents general and specific information on a given computer pro-
gram system and is directed toward an organization's general management and non-
ADP personnel. It discusses how to provide input to the system, respond to
requests from the system for information, and make use of output from the system.

7. Computer Operation Manual (OM)

This report provides precise and detailed information on the control re-
quirements and operation procedures necessary to successfully initiate, run, and
terminate the subject system.

Included in the OM should be instructions regarding the use of utility
programs and procedures ("tools") that might have been developed to exercise the
system.

7

.VI I W

8. Program Maintenance Manual (MM)

The MM presents general and specific information on the computer program.
It includes a detailed technical presentation to allow the maintenance programmer
to effectively maintain the system.

Utility programs and procedures ("tools") necessary to "nintain the system
should be documented in the M.

9. Project Manual (PM)

For small projects, the Command/Management, Computer Operation, and Program
Maintenance Manuals may be combined into one document entitled the "Project
Manual (PM)."

VIII. GENERAL CODING CONVENTIONS

The following discussion details general coding conventions, recommen-
dations, and constraints.

A. Program Layout

Each subprogram shall be comprised of the following sections:

I. PROLOGUE Documentation

The following description defines the content and format for PROLOGUEs in

the context of a sample FORTRAN routine called NAME.

SUBROUTINE NAME
G (GPARI , GPAR2 , PI
B ,GYI
Y ,YPARI , YPAR2)

C AUTHOR(S)

C JOHN H. REYNOLDS
C CODE READ BY
C ROBERT T. BEVAN
C PURPOSE
C THE PURPOSE OF "NAME" IS TO ILLUSTRATE THE CONTENT AND FORMAT OF
C PROLOGUES.
C DESCRIPTION
C THE FORMAT FOR PROLOGUES THAT IS ILLUSTRATED IS FOR SUBPROGRAMS, AND
C NOT "MAIN" PROGRAMS. FOR "MAIN" PROGRAMS, THE FORMAT DIFFERS ONLY
C IN FOUR WAYS:
C
C 1) "CALLING SEQUENCE" SHOULD BE REPLACED WITH
C THE "PROGRAM CARD" DEFINING REQUIRED FILES.
C

8

C 2) A "FILES" CATEGORY IS ADDED UNDER THE
C KEYWORD COMMUNICATION (SEE BELOW). EACH FILE
C SHALL BE DEFINED IN A FORMAT SIMILAR TO THE
C "LOCAL GLOSSARY"; HOWEVER, THE VALUE IN
C PARENTHESES SHALL INDICATE WHETHER THE FILE
C IS AN "INPUT (I)" FILE, AN "OUTPUT (0)" FILE, A
C "BOTH INPUT AND OUTPUT (B)" FILE, OR A
C "SCRATCH (S)" FILE. ACTUAL UNIT NUMBERS, IF
C USLD, SHALL BE ASSOCIATED WITH THE FILE DEFINI-
C TIONS IN THE "FILES" CATEGORY.
C
C 3) UNDER "ASSOCIATED SUBPROGRAMS", ONLY THE
C "CALLS TO" NEED BE INCLUDED.
C
C 4) THE EXTERNAL FILES CATEGORY IS ADDED.
C
C PROLOGUE INDENTATION BEGINS IN COLUMN 5, INDENTING EVERY FIVE (5)
C COLUMNS THEREAFTER. PARAGRAPHS OF TEXT BEGIN IN COLUMN 10, AND ARE
C NOT FURTHER INDENTED, BUT ARE SEPARATED FROM EACH OTHER BY BLANK
C CARD IMAGES (WITH THE APPROPRIATE COMMENT CHARACTER).
C
C THE "AUTHOR(S)" CATEGORY SHOULD INDICATE NOT ONLY THE NAME OF THE
C AUTHOR OF THE COMPUTER PROGRAM, BUT ALSO THE NAME OF THE COGNIZANT
C ANALYST, WHERE APPROPRIATE.
C
C VARIABLE DEFINITIONS, WHETHER "COMMUNICATION" OR "LOCAL GLOSSARY",
C BEGIN IN COLUMN 20, ALLOWING 6 CHARACTERS FOR FORTRAN NAMES,
C FOLLOWED BY ('TYPE'), BLANK=BLANK, AND THE DEFINITION ITSELF
C ALIGNED IN COLUMN 32. 'TYPE' IS EITHER 'A' FOR ALPHA, 'R' FOR
C REAL, 'I' FOR INTEGER, 'X' FOR EXTERNAL ROUTINES, 'L' FOR LOGICAL,
C 'N' FOR "NO TYPE", OR '*' FOR "SAME AS THE TYPE DEFINED IN THE
C CALLING ROUTINE".
C
C FOR SIMSCRIPT VARIABLE DEFINITIONS, BEGIN THE NAME IN COLUMN 20
C (AS IN FORTRAN), AND KEEP THE DEFINITIONS ALIGNED BASED ON THE
C "WORST CASE" NAME IN A GIVEN ROUTINE.
C
C IF A PARAMETER IS BOTH "GIVEN" AND "YIELDED", IT SHOULD BE DEFINED
C UNDER THE "BOTH" SECTION, AND SHOULD APPEAR IN THE PARAMETER LIST
C AFTER THE "GIVEN" AND BEFORE THE "YIELDED" ARGUMENTS.
C
C PARAMETERS SHOULD NOT BE ALPHABETIZED WHEN DEFINED, BUT SHOULD
C APPEAR IN THE SAME ORDER THAT THEY APPEAR IN THE ACTUAL CALL LINE.
C (FOR FORTRAN FUNCTION SUBPROGRAMS, THE FUNCTION NAME ITSELF SHOULD
C APPEAR AS THE FIRST "YIELDED" ARGUMENT.)
C
C FOR PARAMETER LIST DEFINITIONS OF ARGUMENTS THAT ARE ACTUALLY
C "GLOBAL" AT A HIGHER LEVEL, USE "GLOBAL" AS THE DEFINITION (SEE
C EXAMPLE BELOW).
C

9

C FOR "GLOBAL" VARIABLES (I.E., THOSE STORED IN COMMON, FOR FORTRAN),
C ONLY THE NAME OF THE VARIABLE NEED BE SHOWN, AND NOT THE NAME WITH
C TYPE AND DEFINITION. ALSO, MORE THAN ONE VARIABLE NAME MAY APPEAR
C PER CARD IMAGE.
C
C THE DEFINITION OF THE ENTIRE SET OF GLOBAL VARIABLES SHOULD BE KEPT
C IN A GLOSSARY OF VARIABLES THAT INC.-DES THE NAME, TYPE, UNITS,
C DEFINITION AND THE LOCATION OF THE DATA (E.G., IN FORTRAN, THE
C NAME OF THE FORTRAN "COMMON").
C
C "LOCAL" DEFINITIONS SHALL BE ALPHABETIZED AND NEED NOT INCLUDE EVERY
C LOCAL VARIABLE; FOR EXAMPLE, LOOP COUNTERS, TEMPORARY STORAGE, AND
C THE LIKE NEED NOT BE INCLUDED.
C
C UNDER THE ERRORS CATEGORY, AT LEAST THE ERROR NUMBER AND THE NAME OF
C THE ROUTINE THAT SETS THE ERROR SHOULD APPEAR. IT MAY BE DESIRABLE TO
C ALSO INCLUDE THE ACTUAL TEXT OF THE ERROR MESSAGE.
C
C ALL CATEGORIES SHALL ALWAYS BE ENTERED FOR THE TYPE OF ROUTINE TO
C WHICH THEY APPLY (I.E., "MAIN" PROGRAM CATEGORIES ARE NOT REQUIRED IN
C "SUBPROGRAMS"). WHEN THERE IS NO INFORMATION TO BE ENTERED, (NONE)
C SHALL BE ENTERED. WHEN THE ENTRY HAS NOT YET BEEN DETERMINED, THE
C ENTRY "TO BE DETERMINED" SHALL BE USED.
C RESTRICTIONS
C THE RESTRICTIONS TO USING THE ROUTINE SHOULD APPEAR IN THIS
C SECTION, PREFERABLY IN A LIST FORM.
C COMMUNICATION
C FILES ("MAIN" PROGRAMS ONLY)
C TEXFIL(I) = TEXT INPUT FILE
C ERRFIL(O) = ERROR MESSAGE FILE
C PARAMETER LIST
C GIVEN ARGUMENTS
C GPARI (R) = GIVEN PARAMETER # 1 DEFINITION
C GPAR2 (R) = GIVEN PARAMETER # 2 DEFINITION
C PI (R) = GLOBAL
C BOTH
C GYI (R) = GIVEN/YIELDED (BOTH) PARAMETER
C DEFINITION
C YIELDED ARGUMENTS
C YPARI (I) = YIELDED PARAMETER # 1 DEFINITION
C YPAR2 (A) = YIELDED PARAMETER # 2 DEFINITION
C GLOBAL DATA
C GIVEN
C NCPW
C BOTH
C (NONE)
C YIELDED
C (NONE)

10

.°A. " . . .

C LOCAL GLOSSARY
C CNTER (I) = COUNTER, EXIT ON CNTER = 5
C MASS (R) = WEIGHT OF BACH'S FATHER
C NAME1 (A) = NAME OF BEETHOVEN'S FATHER IN
C A-FORMAT
C ERRORS
C 22 (NAME) - "TEXT OF ERROR MESSAGE"

C ASSOCIATED SUBPROGRAMS
C CALLED BY (N.A. FOR "MAIN" PROGRAMS)
C CNAME = NAME OF CALLING PROGRAM
C CALLS TO
C (NONE)
C EXTERNAL FILES ("MAIN" PROGRAMS ONLY)
C THIS CATEGORY SHOULD INCLUDE THE NAMES OF ALL ADDITIONAL FILES RE-
C QUIRED FOR EXECUTION, E.G., SYSTEM LIBRARIES AND OTHER USER PROGRAM
C LIBRARIES.
C REFERENCE(S)
C DOCUMENTATION FROM WHICH THE CODE WAS DERIVED
C LANGUAGE
C FORTRAN
C

2. Specification and DATA Statements (FORTRAN only)

A) COMMON data (with appropriate types)
COMMON blocks shall be alphabetized.

B) Local DIMENSIONs (with appropriate types)

C) DATA statements
(Only local data shall be defined in DATA statements; COMMON
data is to be defined in BLOCK DATA Subprograms.)

D) Statement Functions

E) FORMATs

3. Coding

B. Structure

The use of "structured" programnming techniques shall be used in designing
and coding the models. Use of SEQUENCE, IFTHENELSE, and DOWHILE constructs shall
form the basis for all programs.

For routines coded in SIMSCRIPT 11.5, adherence to these constructs will
not be difficult, since the language itself supports them.

it

However, for routines coded in FORTRAN, implementation is more difficult
because FORTRAN does not support "structured" constructs. Even so, all program
designs (via PDL) and the programs themselves (via "structured" FORTRAN) shall
be structured.

The conventions of Appendix D, "Simulated FORTRAN Structured Constructs,"
shall be used to make FORTRAN code conform to the standard constructs.

C. Readability

The primary intent of this section is to impress upon programmers that
readability of the design of a program and the program itself is paramount. One
wouldn't think of asking a child to begin writing English until he or she could
read English. Yet we still teach programmers to write programs before they are
adept at reading them.

An important aspect of the verification of a design or program lies
in reading each other's code. Without readable programs this exercise is fu-
tile. (See Appendix F for hints when reading "structured" FORTRAN code as imple-
mented with the Control Data Corporation FORTRAN Extended compiler.)

Two contrasting languages, FORTRAN and SIMSCRIPT 11.5, may be used in de-
veloping models. The characteristics of SIMSCRIPT (English-like constructs,
lengthy mnemonics, descriptive statement labels, free form, etc.) permit the
"natural" development of a readable program.

However, a programmer must put forth some effort to obtain readability
within the framework of FORTRAN. Historically, a most discouraging task has been
to familiarize (or re-familiarize) oneself with the content of a FORTRAN program.
The difficulties can be blamed on inconsistent subroutine layouts, mnemonics that
fail to accurately reflect their semantic roles, lack of structure illumination
(via alignment and indentation), random assignment of statement numbers, and so
forth..

The comments and suggestions that follow are taken, in part, from
Henry F. Ledgard's thoughts for developing FORTRAN readability (Reference 3).

1. Mnemonic Usage

A mnemonic should serve the purpose of assisting the humn memory in iden-
tifying specific entities. Thus, the mnemonic itself should convey a meaning.
On the other hand, an acronym as a program symbol does not identify an entity
directly. Therefore, it is important that acronyms be avoided, especially those
that can be interpreted as common words.

Almost without exception, confusion arises when abbreviations are chosen
that result in an acronym or an English word that makes the reader think of a
different, unrelated entity.

12

p °,.-

For example, the legal SIMSCRIPT 11.5 variable "WRITE.OR.READ.MEMORY" might
be shortened by a FORTRAN programmer to "WORM". To some, this may suggest a
"worm gear," to others it may suggest fishing bait. Since the variable in
question has something to do with "accessing memory," perhaps a better choice
of mnemonic would be "ACCMEM".

Confusion can also arise when programmers choose to rename real-world
variables that begin with letters that "interfere" with FORTRAN TYPE defaults
for variable names. It is infrequent that one can preserve the true spelling of
a physical quantity as a FORTRAN mnemonic. Thus, MASS might be explicitly
declared as a "real" variable, instead of renaming it as, say, RMASS. Although
this particular choice may suggest "real mass", to others it may suggest "re-
entry mass".

This document requires that one of the following three options be selected
regarding naming of FORTRAN variables:

a) Explicitly declare the TYPE of only those variables that "inter-
fere" with FORTRAN TYPE defaults (see the previous discussion), or

b) Explicitly declare the TYPE of all variables in the program, or

c) Require that the FORTRAN convention for TYPE defaults be followed
(i.e., names beginning with the letters 'A' through 'H' and '0'
through 'Z' are real; those beginning with the letters 'I' through
'N' are integer).

This absence of explicit TYPE statements permits, if the need
arises, the programmer to implicitly change all REAL variables, for
example, to DOUBLE PRECISION. This eliminates the risk of an
explicit declaration overriding any implicit declarations, as could
happen in a) and b) above.

In addition to the use of mnemonics, purely mathematical functions should

be defined by using familiar notations to lend understanding. Thus,

Z = F(X,Y)

is much more suggestive than

Y = X(Z,F)

The following table, taken from Reference 3, illustrates the concept of
maintaining a proper "psychological distance" between entity names. That is,
names that look, sound, or are spelled alike, or have similiar meanings are not
"distant."

13

_ 1__
I

Name for Name for "Psychological

One Entity Another Distance"

BKRPNT BRKPNT invisible (keypunch error?)

MOVLT MOVLF almost none

CODE KODE small

OMEGA DELTA large

ROOT DISCRM large and informative

Caution: The preceding comments do not imply that the mathentticaZ nota-
tion used in the specification should be pre-empted. Because of the programmer-

analyst interface, one should try to maintain compatibility with the formulation

whenever possible. While this statement may appear to be in contradiction to

the preceding comments, it is not when one considers that the analyst formulating
the mathematics for the program is working from an entirely different notation.

Giving complete naming responsibility to a programmer, even when the names

chosen may be entirely mnemonic, may turn out to be counter productive.

2. Generating Readable Listings

The term "pretty printing" is introduced in Ledgard's book to express the
idea of punching and spacing source code so that the listing itself: 1) displays

an eye-appealing alignment of variables appearing in declarative and COMMON

lists, and, 2) amplifies the logical structure of the code.

Examples:

The following FORTRAN COMMON does not generate much eye appeal and is also

prone to error when changes are made due to its "overcrowding" of mnemonics with

each other and with the continuation symbol:

COMMON/NAMES/JACK,JILL,ROBERT,

IGEORGE,NANCY,SAM,

21DA,JOHN

If one decides ahead of time that the "worst case" mnemonic field width

will be the nominal width and that vertical alignment of both commas and

mnemonics will be maintained, the result is:

COMMON/NAMES / JACK , JILL , ROBERT , GEORGE
1 ,NANCY ,SAM ,IDA

2 ,JOHN

To display the logical structure of code requires the alignment of state-

ments that are logically grouped together and the indentation of statement groups

that are a part of larger logical units. Vertical spacing of the logical units
themselves can be accomplished with blank comment cards (with comment character,

and not entirely blank card images).

14

t _ _ _ _ __-_ _ _ _ _ _

Comments should be aligned with the code structures and never begin with

a "reserved" structured programming keyword (e.g., IF).

The following "structured" FORTRAN example illustrates these concepts:

NPTSMI - NPTS - I
C
C PERFORM BUBBLE SORT ON TABLE
C

DO 1550 1 - 1, NPTSMI
IPLUSI = I + 1

C PERFORM SWAP IF NECESSARY
DO 1500 J= IPLUS1, NPTS

IF (.NOT.(TABLE(I) .GT. TABLE(J))) GO TO 1400
TEMP = TABLE(I)
TABLE(I) = TABLE(J)
TABLE(J) = TEMP

1400 CONTINUE
C ENDIF
1500 CONTINUE
C ENDDO
1550 CONTINUE
C ENDDO

A highly modular structure is a requirement in software development. Thus,
the individual routines must be small (both logically and physically), well-
designed pieces of code dedicated to one specific task or function. Thus, the
probability for change is much lower.

It must be conceded that, for very large routines undergoing continuous
change, the addition of new code would cause rapid deterioration of the original
structure. Without automated "re-indenters" the only recourse would be to re-
punch existing statements to maintain the structure.

Even so, minimal changes can be accommodated (and indentation maintained in
total) by choosing the original indentation increment large enough (e.g. , 5
columns) to allow a smaller increment (e.g., 1 column) for the added statements.

3. Statement Label Usage

From a semantic point of view, most programmers envision labels as pro-
viding a) a unique identity to different versions of a specific construct
(e.g., FORMAT statements), and b) the capability to specify alternate paths with-
in a routine.

An overabundance of labels in the latter category usually implies a poorly
designed routine. More than likely, the routine is not a reflection of a speci-
fic task or function; it represents a collection of tasks. This, in turn, usu-
ally implies that the reader's eye will behave like a pogo stick when attempting

15

_ S
--- s'

to follow the code. On the other hand, a relatively label-free routine implies,
at first glance, that one may read from top to bottom.

Labels can also play an additional role. Their appearance can serve to
clarify program purpose and structure. The label syntax (text strings) of
SIMSCRIPT enhances readability in a natural way. For example, the label
'PRINT.NEXT.TIME.LINE' makes obvious the intent of the code that follows. In
addition, it immediately informs the reader what will happen next when it appears
as a branch target after a logical test. Of course, purely structured SIMSCRIPT
programs will be label-free, i.e., "GO TO-less".

Admittedly the numbers used to represent FORTRAN labels do not convey any
information. Nevertheless, categories of related entities (e.g., input FORMATs,
output FORMATs) can be "isolated" by dedicating a range of numbers (with a con-
stant increment) to represent a particular category. FORTRAN statement numbers
should always be assigned (and appear) in ascending order.

No matter how well designed a program may be, changes are inevitable. How-
ever, changes involving the insertion of additional labeled statements should not
upset the "ascending order" rule. This is not to suggest that one be prepared to
repunch existing labeled statements. It does suggest that, at the outset, the
programmer define the magnitude of the initial increment between statement num-
bers large enough (e.g., 50) to accontnodate the insertion of new labeled state-
ments at a reduced increment (e.g., 25).

By definition, the terms "modularity" and "structured programming" imply
that programmers are developing and maintaining small, label-free routines (ex-
cept, for FORTRAN, those labels necessary to support the simulated structured
constructs of Appendix D). Thus, any fear of "running out" of candidate label
numbers during the life of the routine is unjustified.

D. Linkage/Communication

Overall software development should be approached as a "tool-building" pro-
cess. Where possible, individual routines should be written as if they are to
be placed on a computer system support library for the project.

Routines that do "too much," or are difficult to communicate with because
of a dependency on a particular data environment (e.g., heavy reliance on global/
COMMON instead of parameter lists), have little or no value as "off the shelf"
packages.

1. Subroutines Versus Functions

Violations of the old programming adage, "do not use a function when you
need a subroutine and vice versa," occur too frequently and should be avoided.

16

A function should be used only for its returned value and nothing nmre,
i.e., it should behave the same as in a purely mathematical environment. Many
programmers misuse functions by failing to consider the impact on the program
environment. Thus if F(X) + F(X) does not always equal 2*F(X) because X (or a
global variable) is altered, then an unwanted, difficult-to-detect "side effect"
has been introduced.

Subroutines differ from functions in that they can alter formal parameters
or global variables. However, subroutines are not immune to "side effects" if
heavy reliance is made on "hidden" globals, as opposed to "more visible" param-
eter lists, for data communication.' For example, a routine that redefines a
global, which serves as an input global for a subsequent call, may produce un-
expected results.

2. Parameter Lists

Where possible, total comnunication with a routine will be confined to the
call line only. This is in keeping with the "tool building" concept of program
development; a routine becomes much more attractive to another user if he can
pass his own environment entirely through a call line.

Of course, exceptions will arise, especially in the highest-level routines
where large numbers of input variables must be made available to lower level
routines.

If a routine needs too much information to make parameter passing imprac-
tical (or impossible) then it could be that the routine is doing too much. Ad-
ditional breakdown into smaller modules may be necessary. On the other hand, the
routine could be so highly specialized that its usage as a general tool is very
remote. Thus, a mix of gZobals and formal parameters can be tolerated.

When defining call lines, SIMSCRIPT forces all input ("given") parameters
to appear first, followed by all output ("yielded") parameters.

This same practice should also be followed for FORTRAN routines. If a
"given" argument also serves as a "yielded" argument (for example, a table sort-
ing routine that replaces the given table with the sorted table), then the
"given/yielded" ("both") argument should appear at the end of the "given" side of
the list, i.e., it should be specified as a "both given and yielded" parameter.
Of course, this sort of "parameter duality" should be avoided whenever possible.

3. Global/COMMON Variables

Global (SIMSCRIPT) or COMMON (FORTRAN) variables will be used to isolate
"true" global variables, i.e., those variables, needed by more than one routine,
that cannot be passed as formal parameters.

17

M,X

IX. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS

The foZlowing coding conventions and constraints shall be used for all
FORTRAN routines, the most important of which is adherence to the simulated
"structured" FORTRAN standards illustrated in Appendix D.

Exceptions to cmy of the following requirements may be grcated only by the
Programning Project Manager.

N arbitrary %on-ANSI" programming practices will be allowed (see Ref-

erence 4, ANSI Standards) unless that practice can be shown to be required to

accomplish a given task. That is, if a task cannot be done in ANSI FORTRAN,
"extended" features of the compiler are preferable to assembly language coding.

Non-ANSI practices that are approved must be documented in the code itself.
The recommended method is to insert the characters 'NON-ANSI" in card columns 73-
80.

[CDC's FORTRAN Extended (FTN) compiler is documented in Reference 5.]

A. Alphanumeric Data

1. Declare as integer.

B. Assignment Statements

I. No multiple statements (e.g., no X = Y = Z = 0).

2. No direct storing of Hollerith data (e.g., no STRING-4HABCD).

C. Branching

1. No assigned GO TO statements.

2. No GO TO's to any statement preceding the GO TO statement (e.g,, nc
branching up in the routine). Exceptions to this statemert are

the simulated "structured" FORTRAN conventions of Appendix D.

3. Use only simple integers as the index of a Computed GO TO; for
example,

GO TO (1500,2000), CASENO
and not

GO TO (1500,2000), CASENO(I)

I

18

.... 7"°-"4 .

D. Code Per Se

1. It is recommended that continuation characters be the integers flom
one to nine (1-9), and then the letters A-J (giving a maximum of 19
continuation card images). However, any non-blank, non-zero char-
acter may be used to indicate continued lines (e.g., the plus-
sign).

2. No abbreviation of logical operators (e.g., no .A. for .AND.).

3. Use only simple integers as indices or subscripts.

4. No machine dependent techniques (e.g., bit manipulation, masking,
shifting, etc.) are allowed, unless there is no other way of doing
the job. When required, these techniques shall be clearly identi-

fied in the coding via comments.

5. No "tricky" code, only straightforward, readable code.

6. Use only one statement per card image (e.g., do not use A = B $
C = D).

7. No constant calculations (e.g., no HALF = 1./2.).

8. No "temporary" or "shared" storage.

9. Initialize EVERY variable before use.

10. Do not depend on the values of "local" variables computed on a pre-
vious call to a routine (if the program is ever overlayed, the data
will be destroyed).

11. Indent code to show structure, making the indentation increment
large enough to allow later insertions.

12. A maximum of one (1) STOP statement is allowed, and it must reside
in a centralized "abort" routine.

13. Parenthesize and separate predicates to enhance readability and

avoid ambiguity; for example, use

IF (.NOT.((A.GT.B .AND. C.GT.D) .OR. (E.LT.F))) GO TO 2000

and not

IF(.NOT. (A.GT.B.AND. C.GT.D.OR.E.LT.F))GOT02000

19

14. Use blanks to make code more readable; for example, no blanks

between factors, one blank between terms, i.e.,

A = B*C + D/E, and not A=B*C+D/E

15. Align lengthy code to make more readable.

16. No mixed MODE (TYPE) except explicitly (FLOAT, IFIX, or in assign-
ment statement (I = A)).

17. Do not make "equal" (.EQ.) tests on floating point data, use a
tolerance (unless exact equality is desired). For example,

IF (.NOT.(ABS(A-B) .LE. TOLFP)) . . .

18. Use of literal constants in the executable code:

One of the most error-prone practices that too many programmers use
is that of locking literal constants into the code. These stan-
dards specificaZly prohibit this practice.

Typical abuses include using literal constants for: I/O units,
limits on DO loops, parameters in call lines, and physical con-
stants in calculations. These abuses are not only error-prone
(e.g., using the literal value of w in different places with
differing accuracy), but they present an unnecessary maintenance
headache (e.g., passing the literal size of an array to a routine
and the array size changes so that many lines of code have to be
found and changed). Therefore:

a) Keep the executable code independent of specification
statements. For example, a change to the size of an array
should affect only the specification part of the program
and not the code per se; therefore, use

C DIMENSION MARRAY(NROWS,NCOLS)
DIMENSION MARRAY(9, 9)
DATA NROWS / 9/, NCOLS / 9/

CALL MATRX
G (NROWS, NCOLS, MARRAY,

0 and not

20

DIMENSION MARRAY (9,9)

CALL MATRX(9,9,MARRAY, . . .)

b) Use literal constants in the code only when they define
themselves; for example, if the intent of a line of code is

to increment a counter by one, then

COUNT = COUNT + 1

is a legitimate usage. On the other hand, physical
constants, such as w should never appear literally as
3.14159... in the code. They should be defined mnemoni-
cally to the maximum machine precision at the highest level
and made available to all routines that need them.

c) Do not use literals for I/O units or limits on DO loops.
For example, use

C DIMENSION ARRAY(MAXNUM)
DIMENSION ARRAY(50)
REAL ARRAY
DATA MAXNUM/50/, INPUNT/ 5/

READ (INPUNT) list
DO 4000 N = I , MAXNUM

4000 CONTINUE

C ENDDO

and not 4
DIMENSION ARRAY(50)
REAL ARRAY

READ(5) list

I
21

AI
,.Z, ZAP'-

r

DO 4000 N=1,50

4000 CONTINUE

C ENDDO

19. Do not use compound IF statements with interdependent predi-

cates. For example,

IF (.NOT.(IND .EQ. 9999999999 .AND. T(IND) .EQ. X) ...

could, depending on the FORTRAN compiler and/or machine memory

limitations, cause an invalid subscript reference when IND

9999999999.

20. Do not rely on local variables maintaining their values from CALL-

to-CALL.

E. DO loops

1. Do not exit and re-enter the range of a DO loop.

2. No DOs with an iteration count less than 3, unless upper limit is

variable, or duplication of large block of code would result.

3. End all DOs on CONTINUE, followed by a comment with ENDDO (see

Appendix D).

4. No terminating nested DOs on same label.

5. No invariant calculations in the range of DOs.

F. Documentation

1. Every routine shall have a PROLOGUE of the form illustrated in

Appendices A and B and described in the General Coding Conven-

tions (Section VIII).

2. Interspersed comments shall define every branch point and block of

code, appear before the code they define, and be inserted while
coding, not afterwards. These comments shall be aligned with the

code and should not begin with any of the "reserved" keywords of
structured programming (e.g., IF), unless, of course, those key-
words are being used as part of a structured construct of Appen-
dix D.

3. Blank card images used for spacing must have 'C' in column 1.

22

G. IF Statements

1. No two-branch logical IF statements.

2. No arithmetic IF statements.

H. Input/Output

1. ANSI 'file,format' READs and WRITEs shall be used, i.e.,

READ (IFILE,100) A,B' and WRITE(IFILE,300) A,B
not

READ 100, A,B and PRINT 300, A,B

2. It is recommended that unit numbers 5, 6, and 7 be reserved for
"system input," "system output," and the "system punch," respec-
tively, since this is a widely used standard. However, based on
the decision of the Programming Project Manager, other unit num-
bers may be selected.

3. All unit specifiers shall be data-defined or input, not literals.

4. Preserve all input, i.e., do not read into a variable and then re-
define it during the course of program execution.

I. Naming Conventions (General)

1. No meaningless acronyms. Use 6-character-or-less mnemonics (i.e.,
names that impart meaning).

2. No use of the zero (0) character in names, unless it is part of a

number (e.g., TS560, not TS560).

J. Naming Conventions (COMMON)

A definitive naming convention for COMMON shall be selected, so that
different types of data are grouped together. This naming convention
should be consistent across the entire program and rigorously enforced.
For example, one could set the convention based on program structure
(input COMMONs, output COMMONs, real COMMONs, integer COMMONs, etc.) or
based on program logic (executive COMMONs, fire control COMMONs, ship
COMMONs, navigation COMMONs, missile COMMONs, etc.).

K. Program Control Labels

1. Begin at label 1000, increment by (at least) 50.

2. Keep in ascending order (top-to-bottom).

23

' IT -

3. Right-justify in column 5.

4. Add labels according to the General Coding Conventions (see Sec-
tion VIII).

L. Linkage

1. Pass data in parameter lists to keep routines modular, passing
"given" arguments first, "both" (given and yielded) arguments sec-
ond (if any), and yielded arguments last. For example,

CALL RNAME
G (ARGI, ARG2,
B ,ARG7, ARG9,
Y ,ARG6, ARG8, . . .)

2. If a naming conflict exists between a parameter list argument and
a variable in COMMON, prefix the argument with a P for parameter.

3. If a naming conflict exists between a local variable and a variable
in COMMON, prefix the local variable name with a Q.

4. RETURNS feature not allowed (i.e., multiple points to which one
may return from a subprogram).

5. ENTRY feature not allowed (i.e., multiple points at which a given

subprogram may be entered).

6. Do not pass expressions as arguments.

7. Do not "dummy out" a call line with the same variable name appear-
ing more than once, since this, in effect, equivalences those loca-
tions in the called routine. Also, insure that arrays are "dummied
out" with arrays, and simple variables are "dummied out" with
simple variables.

8. Arrays that are passed as parameters:

The DIMENSION of an array that is passed as a parameter is merely
an indicator to the FORTRAN compiler that it is an array, i.e.,
no storage allocation is done within the called routine. However,
for multi-dimensioned arrays, some dimension information must be
passed and used in the DIMENSION statement within the receiving
routine.

4,

The purpose of this is twofold. First, it permits the FORTRAN
compiler to generate proper code for array addressing. Second,
maintenance is reduced because dimensioning in the called routine

24

j777_____ ____________ ______________

is not affected when changes in the DIMENSION of an array are made
in the calling routine (or higher level routine where the array
was initially declared and subsequently passed through several sub-
program levels).

The general rule to be followed is that the "intermediate" dimen-
sion(s) must be passed while the "final" dimension should be
dimensioned in the called routine at 1 or an obviously meaningless
value such as 99999 (for a single-dimensioned array the "final"
dimension is its only dimension).

Of course, if the called routine needs to use the true value of a
final dimension in the code, it can certainly be passed and used,
a priori, in the DIMENSION statement as well (i.e., as a VARIABLE
DIMENSION).

In the following sections (a-c), the user has the option of using
either I or 99999 as the final DIMENSION of passed arrays (where
99999 also yields the additional benefit of not causing, on some
systems, an informative diagnostic).

a) Single-dimensioned

Unless the array size is well-defined (e.g., a vector), dimen-
sion the array at I, i.e., DIMENSION ARRAY(1).

b) Doubly dimensioned

Pass the number of rows to the routine and dimension the array

as DIMENSION ARRAY (NROWS,1).

c) Triply dimensioned

Pass both the number of rows and columns and dimension the
array as DIMENSION ARRAY (NROWS,NCOLS,1).

9. If any array is passed from one level through a second level to a
third level (or more), it must be dimensioned (as specified in 8.
above) in each of the intermediate levels, as well as in the final
level (where it is used).

M. Specification and Data Statements

1. Labeled COMMON

a. Use equal-length, one-definition COMMON blocks (i.e., insure
that each copy of a labeled COMMON is the same length and con-
tains the same variable names).

25

:71V 7

b. When initializing COMMON via DATA statements, use only BLOCK
DATA subprograms to do so.

c. Where feasible, do not mix control variables with data storage
in the same labeled COMMON.

d. Dimension arrays within the COMMON, i.e., not in a DIMENSION
or declarative statement.

2. Blank COMMON

Not allowed without approval of Programming Project Manager.

3. Type Statements

Keep adjacent to associated COMMON, DIMENSION, or local defini-
tions.

4. DIMENSION Statements

a. Use for local data or parameters only.

b. For variable dimensioning, each "intermediate" dimension must
be a variable, i.e., declarations of the type "DIMENSION ARRAY
(M,3,N)" are prohibited. The "final" dimension can be a vari-
able or a constant (as defined in L.8 above).

5. DATA Statements

a. No implied loops for arrays.

b. Align names, data for readability.

c. In every routine that requires the routine name as Hollerith
data, data-define the routine name as 6 Hollerith characters,
storing in the variable name NAMRTN. For example, for a rou-
tine named ROUNAM

DATA NAMRTN /6HROUNAM/

The purpose of NAMRTN is to make consistent the need for
the routine name in Hollerith, e.g., to pass it to a "trace"
routine.

d. Data-define all constants to the maximum precision of the
machine on which the program will be executed.

e. Do not redefine variables that are in DATA statements (some
compilers will ignore that runtime redefinition).

4
26

6. FORMAT Statements

a. Labels - use increments of 10, and

Use 100 - 290 for input,
Use 300 - 490 for output,
Use 500 - 690 for those FORMATs that are both input

and output

b. Use H-format or the quote (") delimiter to define text. For
routines that are to be executed on many computer systems, the
H-format is preferred to reduce the conversion effort.

c. Restrict formatted output to 132 characters.

7. EQUIVALENCE

Not allowed without approval of Programming Project Manager.

For example, the following sequence of code may behave differently
on the same machine in subsequent executions:

EQUIVALENCE (M,N)

Mf 3
N = N+l
IF (M.EQ.3) GO TO xxxx

N. Subprograms

1. Use a FUNCTION only for its returned value, i.e., do not modify
global data or arguments within a function.

2. Do not use a FUNCTION (SUBROUTINE) where a SUBROUTINE (FUNCTION)
is needed.

3. Do not exceed two pages of code (does not include PROLOGUE comments
or Specification and Declarative statements).

4. Every routine must have one entry (top) and one exit (bottom). The
one exit should be RETURN at the end of the routine.

5. When available, compile routines with "non-ANSI diagnostics" turned
on, so that non-ANSI code can be reckoned with.

6. Adhere strictly to the structured programming constructs of Appen-
dix D. Sloppy implementation of these very important conventions
defeats the purpose of an attempt to "structure" FORTRAN code!

27

'2 ---- I

X. SPECIFIC SIMSCRIPT 11.5 CODING CONVENTIONS AND CONSTRAINTS

SIMSCRIPT 11.5 is a versatile programming language that allows free-form
syntax and free ordering of data structure definitions. However, to enhance
the readability and consistency of SIMSCRIPT programs, the foZZowing procedures
and coding restrictions are required.

A. The PREAMBLE

I. The order of definitions within a PREAMBLE shall be:

a) PERMANENT ENTITIES
b) TEMPORARY ENTITIES
c) System variables
d) Sets
e) EVENT NOTICES
f) Real variables

(I) Simples
(2) Arrays

g) Integer variables
(1) Simples
(2) Arrays

h) Alpha variables
(1) Simples

(2) Arrays
i) Text variables

(1) Simples
(2) Arrays

j) Subprogram variables
(1) Simples
(2) Arrays

k) Declaration of all "function" routines
1) Data collection directives
m) Declaration of all FORTRAN routines
n) Declaration of all "releasable" SIMSCRIPT routines
o) Declaration of all "monitored" SIMSCRIPT routines
p) SUBSTITUTE macros
q) DEFINE TO MEAN declaratives

2. The mode of attributes of entities shall be defined after their
specification.

3. Background mode shall be declared as INTEGER, variable type as RE-
CURSIVE, and DIMENSION as zero.

4. Last column is 72.

5. Pack variables if it is efficient to do so. Field packing shall
be used instead of bit packing whenever possible since less code is
generated.

28

I _ _

6. Use DEFINE TO MEAN (or SUBSTITUTE) statements to simplify and add
meaning to expanded statements. For example,

DEFINE ON TO 1EAN 1
DEFINE OFF TO MEAN 0

SUBSTITUTE READ.A FOR THE FOLLOWING 3 LINES
READ AS /
FOR I = 1 TO 5

READ A(I) AS A 6

Do not use DEFINE TO MEAN where a global variable should be used.
For example, do write:

DEFINE LAST.COL AS AN INTEGER VARIABLE
LET LAST.COL = 72

Do not DEFINE LAST.COL TO MEAN 72. The variable LAST.COL would not
appear in any routine cross reference map and every routine that
uses that symbol would have to be recompiled if its defined value
changed. Whereas, if it were a global variable, only the routine
which assigned the value would have to be recompiled.

7. Include only the set attribute and routines required.

B. Coding Standards

1. The new "structured IF" (a compiler option) shall be used.

2. Do not use numerical statement labels.

3. Use WRITE statements instead of PRINT.

4. Use free-form input whenever possible.

5. Lozal recursive arrays shall be released before leaving a routine.

6. The limits of FOR phrases are re-evaluated for each iteration.
Thus, if the limits are invariant for the life of the loop, evalu-
ate those limits prior to execution of the loop.

7. The JUMP AHEAD and JUMP BACK constructs are not permitted.

8. Since the SIMSCRIPT DO UNTIL test is made at the beginning of the
DO, the loop may not be executed "at least once." The programmer
of a structured PDL DO UNTIL should then avoid use of the SIMSCRIPT
DO UNTIL, and rather use the SIMSCRIPT DO WHILE, where applicable.

29

- - - 4. .

9. Since a 2-dimensional SIMSCRIPT array needs storage for the array

elements plus the row pointers, declaring an array as a FORTRAN
array might reduce memory requirements, especially for arrays having
a large number of rows. This will be beneficial only if the array
is meant to act as it would in FORTRAN (same number of elements in
each row). Only a SIMSCRIPT array can support a "ragged" table.

10. The use of text variables, instead of alpha variables, eliminates
problems with machine dependent word lengths. On the other hand,
the use of text variables instead of alpha variables can increase
program field length. This is because text variables require a
pointer word, and they cannot be packed in entities. Individual
projects should weigh the trade-offs between portability and pro-
gram size.

11. A standard should be adopted at the start of program coding as to
how literal strings will be passed in CALL lines. This is neces-
sary because the value of the "CH" compiler option determines if
literal strings used as given arguments to a routine are passed
as alpha or text variables. One way of avoiding any possible con-
flict is to never pass literals (including DEFINE TO MEAN strings)
to another routine.

C. Indenting Source Code

1. Code only one SIMSCRIPT statement per line.

2. Statements shall start in the following card columns: 1, 10, i5,
20, 25, 30, 35, 40, 45, 50. The heading PREAMBLE and all ROUTINE
declarations shall begin in column 1. The terminator for these
sections shall also be coded starting in column 1. The GIVEN and

YIELDING argument list shall each be on a separate line (starting
in column 10). All other statements must begin in column 10 or
beyond. (Statement labels are discussed in item 16 below.)

3. If a statement cannot be contained on one line, use a second or

third line, but indent according to rule 2 above.

4. Never break a line within a key word or name.

5. Code for SIMSCRIPT programs shall not go beyond column 72.

1.

30

(.2.

~b

6. To help clarify the association of a terminator with its section,
each terminator shall centain a comment giving the section header
name to which the terminator belongs. For example,

PREAMBLE

END ''PREAMBLE

7. In the PREAMBLE, the subsection headers PERMANENT ENTITIES, TEM-
PORARY ENTITIES, and EVENT NOTICES shall begin in column 10.

8. Within each of the elements listed in rule 7, the major definition
statement shall start in column 15 with the definition of attri-
butes of entities (or parameters of events) starting in column 20.
For example,

PERMANENT ENTITIES
EVERY MISSILE HAS

A FIRST.STAGE,
A SECOND.STAGE,
AND BELONGS TO A LAUNCHER

9. Definition statements for attributes shall begin in column 15.

10. Definitions of sets, routines, simple variables, DEFINE TO MEAN
statements, and data collection directives shall begin in col-
umn 10.

11. The first statement in a routine or event (other than the routine
specification itself) shall begin in column 10.

12. FOR loops should be coded in such a way that the statements con-
trolled by the FOR are indented one level. Complex FOR state-
ments requiring more than one line shall be indented if control
clauses are present. For example,

FOR I = 1 TO N.MISSILE
WITH MI.AWAY(I) > 0,
DO

LOOP '' I

In the example, note that the DO clause is indented while the LOOP
statement is brought out to the same level as the FOR statement,
and that it contains a comment which helps to connect the loop to
the control variable.

31

..

13. FOR loops which search for the first case should be coded as
follows:

FOR EACH MISSILE,
WITH MI.AWAY(I) > 0,

FIND THE FIRST CASE
IF FOUND

ELSE

ALWAYS

In the example, the clauses FIND THE FIRST CASE and IF FOUND are on
the same level as the FOR, the contents of the FOR are indented,
and the ELSE and ALWAYS statements are placed at the same level as
the FOR.

14. Nested FOR loops should be indented for each new nesting level.
For example,

FOR I = I TO N
DO
FOR J = I TO L

DO

LOOP ' J
LOOP ''I

15. IF statements shall be coded with the logic treated as one state-
ment, indenting as specified earlier, if the statement is too long
for one card. The statements which comprise the "true" portion of
the IF shall be indented one level as well as the "false" portion
of the IF. For example,

IF A > B AND C >= 0
LET A =A + 1
LET C =C - 1

ELSE
LET B = B + 1
LET D = D- I

* ALWAYS

32

4 * -'a

16. Statement labels shall occupy a separate card. To make them stand
out, labels shall always begin in column one. For example,

'PREPARE'
LET MI.PREP(MISSILE) = TIME.V

17. Comments shall precede blocks of code that perform a unified
function. To help make these comments stand out, a blank comment
card shall be included before and after the comment. The first
word of the comment shall line up with the block of code it iden-
tifies. For example,

9[

it LOAD TACTICAL PROGRAMS
tt

CREATE A JB.LIST CALLED I

18. Often it is desirable to comment on a specific statement to expand
on its meaning. To specify a single convention for such comments
is difficult since statements may begin well into a card image and
perhaps terminate on some following card. However, where possible,
the comments should be coded starting in column forty-five (45).
For example,

CALL RUNGE.KUTTA ''INTEGRATE TO NEXT STEP

D. Debugging Aids

1. During the checkout phase, programs shall be compiled with the T
option (line numbers printed in TRACEBACK). When individual rou-
tines are checked out, they shall be recompiled without the T op-
tion to reduce core.

2. A SNAP.R routine shall be coded which prints current values or
relevant data structures when a program error is detected. The
routine shall be deleted upon completion of checkout to conserve
storage.

3. Always include a TRACE statement just prior to program termination

so that the Dynamic Storage Hap can be studied for possible storage
"leakage".

33

4. In addition to the T option, the E option shall be used. For

example,

SIMII5(OPT=TE)

5. The structure option, ST, can be used to get a report of the global
data structures defined in the PREAMBLE and a report of the program
structure of a program. The global data structures report should

be examined to verify correctness of the PREAMBLE and for identify-
ing the values of global variables in a traceback. The program
structure report provides a hierarchical listing of routine rela-

tionships. The ST option should be used when the PREAMBLE is de-
fined or changed, or the program is recompiled. Setting the ST
option to PART should be sufficient for most needs.

6. Take advantage of the OLD PREAMBLE or VERY OLD PREAMBLE feature

whenever possible.

E. Files/Units

1. The USING phrase should be used only if a file is being used
(written to/read from) on a one-time basis. If the file will be

used several times, the USE phrase should be used. For example,
if a file IN is read from within a loop, then outside of the loop
should be the statement,

USE IN FOR INPUT

2. EOF.V will retain its value for a file after that file is rewound.
Therefore, EOF.V should be re-initialized for rewound files.

3. The IF CARD IS NEW test on a BCD unit determines where the next
non-blank field resides. The result is false if the next non-

blank field is on the current input record and true otherwise.
That is, CARD IS NEW does not mean that a new record has been en-
countered, but that the remainder of the current record is blank.

F. Documentation Conventions

1. The following lettering conventions should be used to identify the
variable type in the prologues and glossary:

A = ALPHA
I - INTEGER
R - REAL
T - TEXT

TE - TEMPORARY ENTITY

34

PE = PERMANENT ENTITY

S = SET
DF = DEFINE TO MEAN

SP = SUBPROGRAM VARIABLE

EN = EVENT NOTICES

2. The column definitions for the glossary are:

Columns Description

1 - 2 SIMSCRIPT comment character ('')

4 - 25 the variable name
27 - 30 the variable type, in parenthesis, right

justified

32 - 80 the variable definition

3. Prologues for SIMSCRIPT functions shall have only the given argu-
ments in the CALLING SEQUENCE section. In the PARAMETER LIST

section, the given arguments are defined under the appropriate sub-
section, and the function name, with the type and definition, will

appear in the YIELDED ARGUMENTS subsection. The RETURN WITH varia-
ble, provided it is not an arithmetic expression, will appear in
the LOCAL GLOSSARY section.

XI. CONFIGURATION MANAGEMENT

In a large programming system it is extremely important that complete con-
trol of the configuration and changes to the configuration be maintained and
recorded. In addition, the ability to recreate previous versions of the system
must be available.

Software configuration management of large systems requires a "Symbolic
File Maintenance Program." In many cases such a program is available from the
computer system vendor (e.g., Control Data Corporation, IBM). This "tool" is so
important that it is well worth the effort to write one if it is not available.

Using such a program, changes to and control of the programming system are
achievable and a "Software Configuration Control Board" can function much more

effectively with it.

The Control Data Corporation (CDC) supplies a symbolic file maintenance

program, named UPDATE. This program has all the facilities necessary for com-
plete configuration control on programs installed on CDC 6000 Series Computer

Systems. An example of the recommended format for UPDATE (see Reference 2) pro-
gram libraries is defined in Appendix C.

35

.2;.

REFERENCES

1. Caine, Stephen H., Gordon, E. Kent, "PDL, A Tool for Software Design,"
Caine, Farber, and Gordon, Pasadena, California, 1975.

2. Control Data Corporation, "Update Reference Manual," CDC Publication Num-
ber 60342500, Sunnyvale, California, May 1978.

3. Ledgard, Henry F., "Programming Proverbs for FORTRAN Programmers," Hayden

Publishing Co., Inc., Rochelle Park, New Jersey, 1975.

4. American National Standards Institute (ANSI), FORTRAN X3.9, 1966.

5. Control Data Corporation, "FORTRAN Extended Reference Manual," CDC Publica-
tion Number 60305601, Sunnyvale, California, January 1979.

6. Goyette, Peter J., "INPUTP (General Purpose Input Processor) User Guide,"
Naval Surface Weapons Center Technical Report TR-3880, Dahlgren, Virginia,
January 1979.

7. Control Data Corporation, "Scope Reference Manual," CDC Publication Num-
ber 60307200, Sunnyvale, California, January 1979.

36

APPENDIX A

SAMPLE FORTRAN SUBPROGRAM

1i

.1

S

Appendix A - Sample FORTRAN Subprogram

SUBROUTINE EXAMPL
G (NITEMS
B ,BASKET
Y ,NSOCKS)

C AUTHOR(S)
C JOHN H. REYNOLDS
C CODE READ BY
C ROBERT T. BEVAN
C PURPOSE
C THIS ROUTINE DOES NOT DO ANY MEANINGFUL COMPUTATIONS. HOWEVER, IT
C DOES REPRESENT AN ATTEMPT TO ILLUSTRATE PREVIOUSLY DISCUSSED CONCEPTS
C CONSIDERED NECESSARY TO OBTAIN A UNIFORM LAYOUT FOR FORTRAN ROUTINES.
C DESCRIPTION
C IN ADDITION TO THE PROLOGUE, TlE ROUTINE ILLUSTRATES ORDERING OF
C DECLARATIVES, NUMBERING CONVENTIONS FOR FORMATS, NAMING OF LABELED
C COMMONS AND SO FORTH. IT ALSO ILLUSTRATES A SUGGESTED FORMAT FOR
C DEFINING GIVEN (G), BOTH GIVEN AND YIELDED (B), AND YIELDED (Y)
C PARAMETERS IN THE ACTUAL PARAMETER LIST (SEE ABOVE).
C
C THE CALL LINE MAY APPEAR TO HAVE MEANING. IT IS INCLUDED HERE ONLY
C TO GIVE THE REMAINDER OF THIS PROLOGUE SOME DEGREE OF SUBSTANCE WHILE
C AT THE SAME TIME ILLUSTRATING HOW TO DOCUMENT A PARAMETER THAT SERVES
C AS A "GIVEN" AND "YIELDED" ARGUMENT.
C
C THUS, WE CAN ASSIGN SOME MEANING TO THE PARAMETERS BY ASSUMING THAT
C THIS ROUTINE COUNTS AND REMOVES ALL SOCKS FROM A BASKET OF LAUNDRY.
C RESTRICTIONS
C (NONE)
C COMMUNICATION
C PARAMETER LIST
C GIVEN ARGUMENTS
C NITEMS(I) = NUMBER OF LAUNDRY ITEMS
C BOTH
C BASKET(A) = ARRAY OF LAUNDRY WHICH IS YIELDED AS A COMPRESSED
C ARRAY
C YIELDED ARGUMENTS
C NSOCKS(I) = NUMBER OF INDIVIDUAL SOCKS FOUND
C GLOBAL DATA
C GIVEN
C TOTSOK
C BOTH
C (NONE)
C YIELDED
C (NONE)
C LOCAL GLOSSARY

A-I

C DIMSKS(I) = DIMENSION OF SKSTAT
C SKSTAT(A) = ARRAY OF KEYWORDS DESCRIBING SOCK CONDITIONS
C ERRORS
C 103 (EXAMPL) - "TEXT OF ERROR MESSAGE NUMBER 103"
C ASSOCIATED SUBPROGRAMS
C CALLED BY
C WASHER
C CALLS TO
C ERROR
C REFERENCE(S)
C "COMPUTER PROGRAMMING/CODING STANDARDS"
C LANGUAGE
C FORTRAN
C
C /SOCKS / TOTAL SOCK COUNT

COMMON /SOCKS / TOTSOK
INTEGER TOTSOK

C
C DIMENSION BASKET(NITEMS), SKSTAT(DIMSKS)

DIMENSION BASKET(NITEMS), SKSTAT(5)
INTEGER BASKET , SKSTAT , DIMSKS
INTEGER A ,C ,D ,ERRNO
DATA SKSTAT/ 1OHDIRTY , 10HSMELLY 1OHCLEAN

1 10HRIPE 10HHOLES
DATA NAMRTN/6HEXAMPL/

C

C INPUT FORMATS
C

100 FORMAT ()
110 FORMAT ()
120 FORMAT ()

C
C OUTPUT FORMATS
C

300 FORMAT ()
310 FORMAT ()
320 FORMAT C)
330 FORMAT ()

C

A-2

C
C ************* START OF EXECUTABLE CODE ^ . *
C

NSOCKS = 0

C
C THE FOLLOWING CODE SHOWS THE INDENTATION OF
C THE "DOWHILE" AND "IF" STATEMENTS IN A STRUCTURED FORM.
C

I=1
ERRNO = 0

C DOWHILE I < = NUMBER OF ITEMS AND ERROR NUMBER = 0
1200 IF (.NOT.(I .LE. NITEMS .AND. ERRNO .EQ. 0)) GO TO 1500

A=B

C COMMENT DESCRIBING NEXT "IF" TEST
IF (.NOT.(A .GT. TOTSOK)) GO TO 1300

ERRNO = 103
CALL ERROR

G (ERRNO)

GO TO 1450
C ELSE (COMMENT DESCRIBING NEXT "IF" TEST)
1300 IF (.NOT.(C .EQ. D)) GO TO 1400

DO 1350 J = .
BASKET(J) = BASKET(I)

1350 CONTINUE
C ENDDO
1400 CONTINUE

C ENDIF
1450 CONTINUE

C ENDIF
I=I+ I
GO TO 1200

1500 CONTINUE
C ENDWHILE

RETURN
END

A-3

APPENDIX B

SAMPLE SIMSCRIPT 11.5 SUBPROGRAM

Appendix B - Sample SIMSCRIPT 11.5 Subprogram

ROUTINE MATRIX,M ULTIPLY
GIVEN FIRST.MATRIX, SECOND.MATRIX
YIELDING PRODUCT.MATRIX, ERROR.FLAG

AUTHOR(S)
PETER J. GOYETTE

of CODE READ BY
DONALD J. LEMOINE

PURPOSE
THE PURPOSE OF THIS ROUTINE IS TO MULTIPLY TWO GIVEN
MATRICES (FIRST.MATRIX * SECOND.MATRIX).

it DESCRIPTION
AN ERROR CHECK IS INITIALLY PERFORMED TO BE SURE THAT THE INNER
DIMENSIONS OF THE GIVEN MATRICES ARE EQUAL. THEN, THE ROUTINE
RESERVES THE SPACE NEEDED FOR THE PRODUCT MATRIX AND MULTIPLIES
THE TWO MATRICES.

1' RESTRICTIONS
(NONE)

COMMUNICATION
PARAMETER LIST

GIVEN ARGUMENTS
FIRST.MATRIX (R) = IST FACTOR IN MULTIPLICATION

o SECOND.MATRIX (R) = 2ND FACTOR IN MULTIPLICATION
YIELDED ARGUMENTS

PRODUCT.MATRIX (R) = MATRIX RESULTING FROM THE MULTIPLICATION
ERROR.FLAG (I) = AN ERROR CONDITION IS DENOTED BY A VALUE

of9> 0
BOTH ARGUMENTS

(NONE)
GLOBAL DATA

GIVEN
(NONE)

YIELDED
(NONE)ofBOTH

BT (NONE)

to LOCAL GLOSSARY
It COLUMN (I) = NUMBER OF COLUMNS IN PRODUCT MATRIX

INNER (I) = INNER DIMENSION OF GIVEN MATRICES
ROW (I) = NUMBER OF ROWS IN PRODUCT MATRIX

to ERRORS
10 (MATRIX.MULTIPLY)

it ASSOCIATED SUBPROGRAMS
it 'CALLED BY

POLYFIT

B-i

CALLS TO
DIM.F
ERROR

REFERENCE (S)
RALSTON'S NUMERICAL ANALYSIS

LANGUAGE
CDC SIMSCRIPT 11.5

DEFINE PRODUCT.MATRIX, FIRST.MATRIX , SECOND.MATRIX
AS 2-DIM REAL ARRAYS

DEFINE ERROR.FLAG, INNER , ROW , COLUMN
I , J K

AS INTEGER VARIABLES

of CHECK FOR COLUMN DIMENSION OF FIRST MATRIX BEING
it EQUAL TO ROW DIMENSION OF SECOND MATRIX

LET INNER = DIM.F(FIRST.MATRIX(1,*))
IF INNER NOT EQUAL TO DIM.F(SECOND.MATRIX(*,*))

CALL ERROR(10)
LET ERROR.FLAG = 1

ELSE

DEFINE DIMENSIONS OF THE PRODUCT MATRIX

LET ROW = DIM.F(FIRST.MATRIX(*,*))
LET COLUMN = DIM.F(SECOND.KATRIX(I,*))
RESERVE PRODUCT.MATRIX(*,*) AS ROW BY COLUMN

MULTIPLY MATRICES

FOR I = 1 TO ROW
DO
FOR J = 1 TO COLUMN

DO
FOR K = 1 TO INNER

DO
LET PRODUCT.MATRIX(I,J) = FIRST.MATRIX(I,K)

SECOND.MATRIX(K,J)
+ PRODUCT.MATRIX(I,J)

LOOP ''K
LOOP ''J

LOOP ''I
ALWAYS
RETURN4i END '' MATRIX.MULTIPLY

B-2

APPENDIX C

RECOMMENDED STRUCTURE AND FORMAT FOR CDC

UPDATE PROGRAM LIBRARIES

Appendix C
Recommended Structure and Format For

CDC UPDATE Program Libraries

The format for Control Data Corporation (CDC) 6000 Series UPDATE program
libraries illustrated in this appendix is that used by NSWC (K70 Division) Fleet
Ballistic Missile Weapon System Simulations. Although the authors strongly
recommend this format (which is supported by a comprehensive set of catalogued
job control procedures and utility programs) it is shown in this report merely as
an example.

UPDATE is the name of the symbolic file maintenance program for the Con-
trol Data Corporation (CDC) 6000 Series of Computer Systems. A facility of this
type, which maintains a chronological history of a given file and allows one to
revert to previous states of the file, is a requirement for software configura-
tion management.

This section assumes that the reader has, at least, a basic knowledge
of UPDATE and directs the reader to Reference C-I, the CDC UPDATE Reference
Manual.

The program library format illustrates the use of the *DECK and *COMDECK
features of UPDATE for a FORTRAN model file. Each subprogram exists in an *DECK,
each subprogram PROLOGUE in an *COMDECK, and each FORTRAN COMMON in an *COMDECK
(where an asterisk is the UPDATE master control character).

The UPDATE program library (P.L.) is a multi-record file delimited by
UPDATE end-of-records (*WEORs). (The *WEOR commands on the P.L. tell UPDATE to
write an end-of-record on the COMPILE file if the *DECK containing the *WEOR is
modified; actual end-of-records do not exist on the UPDATE P.L.)

The reason for this record structure is simply to keep the infor-
mation associated with a given model in one easily-accessible lo-
cation. Here then, the model GLOSSARY, ERROR MESSAGES, FORTRAN code,
DOCUMENT, Design, and Input Initialization are stored on one file.
In this way the probability of maintaining current documentation
increases dramatically.

{Additionally, from a purely functional point of view, storing all
model-related information on one P.L. allows one to access common
information from either the FORTRAN code section, the DOCUMENT sec-
tion, or the design (PDL) section of the file (via the *COMDECK
feature of UPDATE).}

It ia critical that this format be maintained for all models since the
catalogued job control procedures and utility programs developed assume this
structure. This allows the programmer to modify and access each of the sections
of the P.L.

C-1 c-i I
"- mmn mdmmw s m m mm m ~ mwmm"wn p'mm -I-

rG

In order that the burden of creating the first cut at a new model P.L.
be relieved, a catalogued job control procedure is available to create the ini-
tial version of the file. This procedure creates a file containing all "global"
*COMDECKS needed, or, optionally, only those "global" *COMDECKS needed to support

the basic file structure.

Descriptions of the four records on the P.L. follow:

The first record: all *COMDECKS are stored at the beginning of each P.L.
to prevent potential errors (calling an *COMDECK before it has been encountered).
All FORTRAN *DECKS are also stored in the first record. This record is term-
inated by a special *DECK (*DECK FOREOR) containing nothing but an UPDATE end-
of-record (*WEOR).

The second record: only the model DOCUMENT *DECK exists in this record.
This DOC *DECK defines the name of the model and the names of all subprograms
in the model with associated brief descriptions. This *DECK allows for the auto-
matic generation of a document containing the model GLOSSARY, ERROR MESSAGES,
and each subprogram PROLOGUE (i.e., the *COMDECKS in which the PROLOGUEs are
stored are accessed in the DOC *DECK as well as in the FORTRAN and PDL *DECYS).

Access to this "document generating" facility is provided via a catalogued
job control procedure and utility program. The utility program creates an input
file for the "Computer Assisted Documentation" (CAD) Program, through which the
actual document is generated. This record is also terminated by a special *DECK
(*DECK DOCEOR) containing nothing but an UPDATE end-of-record (*WEOR).

The third record: contained in this record is the model design document
in the form of a Program Design Language (PDL) from which a design document can
be generated using the PDL Processor of Reference C-2. This record is terminated
by a special *DECK (*DECK PDLEOR) containing nothing but an UPDATE end-of-record
(*WEOR).

The fourth record: the initialization *DECK for the general purpose Input
Processor (see Reference C-3) is contained in this record. The IPI (Input Pro-
cessor Initialization) *DECK is stored on the P.L. so that all model FORTRAN
COMMONs, through which the data is passed to the computational program, are
available to the Input Processor (i.e., the COMMON *COMDECKS can be called).
Also contained in the IPI *DECK are keywords and variables associated with the
model default data environment.

IC

~C-2

Schematically, it looks like the following:

All COMMON *DECKS (*COMDECKS)
All FORTRAN *DECKS

*WEOR

DOCUMENT *DECK
*WEOR

Program Design Language (PDL) *DECK
*WEOR

Input Processor Initialization (IPI) *DECK

The uniqueness for UPDATE identifiers (i.e., *DECK names and *COMDECK
names) is maintained by suffixing each of several generic IDENTs with the model
name (which is also a parameter to the catalogued job control procedures).

Each model (MDL) has two identifications. The first is the 6-character
(or less) name that is used in the permanent file naming convention and for

UPDATE IDENTs. The second is the 3-character (or less) abbreviation of the 6-
character name that is used in the "model" columns in the GLOSSARY.

For example,

6 3
Char Char
Name Name Model Description

PPIV PPV Platform Positioning/Initial Velocity Model
NAVSHP NS Navigation/Ship Model

This convention applies only to the following IDENTs {where underscore..)
means concatenation):

Generic Model 'IDENT'
Name Name Meaning

GLO GLO MDL MDL GLOssary *COMDECK
DEF DEFMDL MDL Glossary DEFinitions (only) *COMDECK
ERR ERR-MDL MDL ERRor Messages *COMDECK
DOC DOC-MDL MDL DOCument *DECK (which defines all

routine names and briefly describes them) *1

I

C-3

Vw

Generic Model 'IDENT'
Name Name Meaning

MDL/D MDL/D MDL Design *DECK containing PDL text
IPI IPI MDL MDL Input Processor Initialization *DECK

containing the "template" of information
necessary for variables that are read in
by the Input Processor (e.g., class
names, class variable mnemonics, *CALLS
to COMMON blocks containing those vari-
able mnemonics, . .)

The following illustrates the structure of a sample FORTRAN file:

*COMDECK GLOBALS (an empty *COMDECK, used merely as an aid to

reading the UPDATE directory)

{This section contains all "global" *COMDECKS, any of
which may be required by any subsystem "model." It is
supplied to each of the model program libraries by the
MASTER "control point," and is NEVER to be updated by a
given subsystem model control point.

Included in this section are: "global" FORTRAN COMMON

*COMDECKS, and several "boilerplate" *COMDECKS used by

the DOCUMENT *DECK (see *DECK DOC MDL below) that exists
on all subsystem model UPDATE program libraries. Exam-
ples of these "boilerplate" *COMDECKS are: TITLE1,
TITLE2, SECI, SECII, SECIII, GLOHEADER, ERRHEADER, and
FORSTART.}

*COMDECK ENDGLOBAL (an empty *COMDECK, used merely as an aid to

reading the UPDATE directory)

*COMDECK DEF MDL (must occur on P.L. before *COMDECK GLO MDL)

C VARNAN (A) FT/SEC DESCRIPTION OF VARIABLE NAME, CONTINUED A0001 NS
C ON NEXT LINES IF NECESSARY. ALL GLOSSARIES
C SHALL BE ALPHABETIZED BY NAME.

{The remainder of the "model" GLOSSARY definitions
appear here as part of the DEF MDL (definitions of
model) *COMDECK in alphabetical order by variable name.

C-4

The header delineating the columns for the glossary is
stored in the global *COMDECK GLOHEADER (see above
"global" *COMDECKS). The column definitions for the
GLOSSARY are:

Columns Description

1 C, the FORTRAN comment character
3-8 The variable name (<= 6 characters)

10-12 The variable type {(I) for integers,
(R) for reals, (A) for alphanumerics}

14-21 The variable units
23-67 The variable definition
69-74 The name of the FORTRAN COMMON block in

which the variable is stored
76-78 The 3-character model abbreviation in which

the data originated)

*COMDECK GLO MDL
*CALL GLOHEAER
*CALL DEFMDL

*COMDECK ERR MDL
*CALL ERRIIEADER
C 1 SAMPLE ERROR MESSAGE # 1 FATAL
C 2 SAMPLE ERROR MESSAGE # 2 NON-FATAL
C 3 SAMPLE ERROR MESSAGE # 3 FATAL

*COMDECK FTN1/P (1st PROLOGUE)
*COMDECK FTN2/P (2nd PROLOGUE)
*COMDECK FTN3/P (3rd PROLOGUE)

*COMDECK COMONI (1st FORTRAN COMMON)
*COMDECK COMMON2 (2nd FORTRAN COMMON)
*COMDECK COMMON3 (3rd FORTRAN COMMON)

*DECK FTN1 (1st FORTRAN routine)
*CALL FTNI/P (Ist FORTRAN routine PROLOGUE call)
*CALL COMMONi (some FORTRAN COMMON *COMDECK call)

C-5

*CALL FORSTART
*DECK FTN2 (2nd FORTRAN routine)
*CALL FTN2/P (2nd FORTRAN routine PROLOGUE call)
*CALL COMMONi (some FORTRAN COMMON *COMDECK call)
*CALL FORSTART
*DECK FTN3 (3rd FORTRAN routine)
*CALL FTN3/P (3rd FORTRAN routine PROLOGUE call)
*CALL COMMONi (some FORTRAN COMMON *COMDECK call)
*CALL FORSTART

*DECK FOREOR (FORTRAN end-of-record)
*WEOR

*DECK DOCMDL

{Note: In the DOC MDL *DECK, the model name (with I or
more lines of description on separate card images) is
first defined, starting in column 2 or beyond and not
exceeding column 50. This is followed by each routine
name with up to 8 lines of description each.

The routine names should occur as follows: highest
level controlling routine first, remainder of routines
in alphabetical order.

Each routine name (<= 6 characters) must begin in column
one, followed by the brief description of the routine on
separate card images, each description line beginning in
column 2 or beyond and none exceeding column 50. A
maximum of 8 lines of description are allowed. These
routine name descriptions are used to generate the table
of contents for the final CAD document; therefore, they
are normally only 1 or 2 lines long.}

Model Name (<= 6 characters)
Model Description (as many lines as needed, <= 50 columns)
NAME1
Description of NAMEI
NAME2
Description of NAME2
Description of NAME2 continued

LNAME

Description of last name

C-6

iJ V"

4 !

*DECK DOCEOR (DOCUMENT end-of-record)
*WEOR

*DECK MDL/D

* (DL for this MDL)

*DECK PDLEOR CPDL end-of-record)
*WEOR

*DECK IPIMDL

G (PI for this MDL)

C-7

REFERENCES

C-I. Control Data Corporation, "Update Reference Manual," CDC Publication Num-
ber 60342500, Sunnyvale, California, May 1978.

C-2. Caine, Stephen H., Gordon, E. Kent, "PDL, A Tool for Software Design,"
Caine, Farber, and Gordon, Pasadena, California, 1975.

C-3. Goyette, Peter J., "INPUTP (General Purpose Input Processor) User Guide,"
Naval Surface Weapons Center Technical Report TR-3880, Dahlgren, Virginia,
January 1979.

I8

C-8

APPENDIX D

SIMULATED FORTRAN STRUCTURED CONSTRUCTS

-- -

Appendix D- Simulated FORTRAN Structured Constructs

The following structured programming constructs are the only ones allowed
when writing 'Pseudo-structured" FORTRAN code. Of all the standards documented
in this report, the use of these conventions is the most important and is crit-
ical to the success of a readable, structured set of FORTRAN code. They must be
implemented exactly as defined.

Note that this appendix contains three sections, the first containing the
PREFERRED constructs, the second containing SUPPLEMENTAL constructs that, at
times, make the implementation of structured coding easier in FORTRAN, and the
third containing an example of actual DOWHILE use.

1) The PREFERRED constructs:

These are the basic constructs and are the only ones necessary to describe
any set of logic. They consist of the PRIME control constructs, the CASE state-
ment, and the FORTRAN DO statement.

2) The SUPPLEMENTAL constructs:

These constructs my be used only when approved by the Programring Project
Manager. Waivers may be granted when it can be shown that use of the PREFERRED
constructs is overly cumbersome, inefficient, or difficult to implement.

For example, implementation of a structured CASE statement can be cumber-
some when the CASE number is not readily available. Computation of the CASE num-
ber via the PREFERRED IF-ELSE can cause excessive indentation leading to line
overflow when there are many cases. For this reason, the IF-ELSEIF construct
was added as an alternative to the CASE statement. It was not added as an arbi-
trary option to the IF-ELSE.

.D

D-1

*kA********** * PREFERRED Constructs .

***** IF-ELSE *

IF (.NOT.(p)) GO TO s1
("true" code)
GO TO S2

C ELSE
s 1 ("false" code)
S2 CONTINUE

C ENDIF

or

** ~** IF-ELSE (ALTERNATE IMPLEMENTATION) *

IF (.NOT.(p)) GO TO si
("true" code)

GO TO s2
C ELSE

s1 CONTINUE
("false" code)

S2 CONTINUE
C ENDIF

***** IF *-***

IF (.NOT.(p)) GO TO si
("true" code)

si CONTINUE
C ENDIF

*k*** DOWHILE *****

C DOWHILE (p)
s1 IF (.NOT.(p)) GO TO S2

(code)
GO TO si

S2 CONTINUE
C ENDWHILE

i

D-2

***** CASE *****

C CASE ENTRY
GO TO (si, S2, 83, s4), CASENO

C
C CASE I

si (code for case 1)
GO TO s5

C
C CASE 2

S2 (code for case 2)
GO TO s5

C
C CASE 3

83 (code for case 3)
GO TO s5

C
C CASE 4

S4 (code for case 4)
C

8s CONTINUE

C ENDCASE

***** FORTRAN DO *****

DO si I-ml,m2,m3
(code)

si CONTINUE
C ENDDO

D-

D-3

*********** SUPPLEMENTAL Constructs **********

***** DOUNTIL ***

C DOUNTIL (p)
si *(code)

IF (.NOT.(p)) GO TO si
C ENDUNTIL

***** DOWHILE-DO *

C DO
sI CONTINUE

(code)
C WHILE(p)

IF (.NOT.(p)) GO TO S2
(code)
GO TO si

S2 CONTINUE
C ENDDO

***** IF-ELSEIF-ELSE *****

IF (.NOT.(p)) GO TO si
(code)
GO TO sn

C ELSEIF
sI IF (.NOT. (q)) GO TO S2

(code)
GO TO sn

C ELSEIF
S2 IF (.NOT.(r)) GO TO S3

(code)
GO TO an

C ELSEIF
s(m-l) IF (.NOT.(s) GO TO sm

(code)
GO TO sn

C ELSE
asm (code)
sn CONTINUE

EC NDIF

D-4

.tip
i i li- "

* IF-ELSEIF

IF (.NOT.(p)) GO TO si
(code)
GO TO sn

C ELSEIF
sl IF (.NOT.(q)) GO TO S2

(code)
GO TO sn

C ELSEIF
s2 IF (.NOT.(r)) GO TO S3

(code)
GO TO sn

C ELSEIF
s(n-1) IF (.NOT.(s)) GO TO sn

(code)
sn CONTINUE

C ENDIF

* BEGIN-END BLOCK

(used to highlight sections of code by indentation)

C BEGIN

(code)

C END

D-5
I -.

.t

-- [- :*:D _ _ _ _ _ _ _ _

* * Implementation of a
********** FORTRAN READ Loop *

The following samples illustrate the use of a DOWHILE in implementing a
FORTRAN READ loop. (Note: These examples illustrate a DOWHILE with a simple
predicate (NO EOF). Compound predicates in a READ loop require a second nested
DOWHILE for correctness.)

***** DOWHILE (with two READs) *****

READ (FILE) list
C DOWHILE NO EOF
1000 IF (.NOT.(EOF(FILE) .EQ. 0.0)) GO TO 2000

(code)

READ (FILE) list
GO TO 1000

2000 CONTINUE
C ENDWHILE

***** DOWHILE (with one READ) *****

C DOWUILE NO EOF
1000 READ (FILE) list

IF (.NOT.(EOF(FILE) .EQ. 0.0)) GO TO 2000

(code)

GO TO 1000
2000 CONTINUE

C ENDWHILE

'I

D-6

DOWHILE-DO (with one READ)

C DO
1000 READ (FILE) list

C WHILE NO EOF
IF (.NOT.(EOF(FILE) .EQ. 0.0)) GO TO 2000

(code)

GO TO 1000
2000 CONTINUE

C ENDDO

-"* DOWHILE (FORTRAN '77 Syntax, one READ)

C DOWHILE NO EOF
1000 READ (FILE,eoflb) list [WHERE eoflb = EOF label}

(code)

GO TO 1000
eoflb CONTINUE
C ENDWHILE

D-7

6..

APPENDIX E

PDL CONWV'?IONS

Appendix E- PDL Conventions

The following conventions should be followed when using the "Program Design
Language" Processor of Reference E-1.

1. Do not use the ELSEIF. UNDO, or CYCLE keywords. That is, use only
"structured" constructs availabZe through the PDL processor.

2. Use the CALL keyword when accessing SEGMENT names, and follow the
SEGMENT name with the actual routine name preceded by a dash. For example:

CALL RETRIEVE GRAVITY DATA - RGRAVD

3. On SEGMENT cards ($S), follow the name of the SEGMENT with a dash and
the name of the actual routine (putting the name in parentheses after the SEGMENT
name will keep the routine name from appearing in the PDL Processor table of
contents and SEGMENT Reference Tree). For example:

$S RETRIEVE GRAVITY DATA - RGRAVD

4. Define the data character as a period ($DATACHR.) and use it in all
variable names referenced (e.g., TIME.OF.FLIGHT).

5. Define two text segments at the beginning of the PDL, one for "system"
global data (i.e., data needed by or from the "system" containing this "model"),
and the other for "model" data (i.e., data used across more than one routine in
the applicable subsystem model).

Also, for defining PROLOGUE text segments, follow the name with a dash,
the routine name, and PROLOGUE in parentheses. For example:

$T RETRIEVE GRAVITY DATA - RGRAVD (PROLOGUE)

6. In PR')LOGUEs, if something has not yet been addressed indicate that is
"to be determined"; if it has been addressed and there are "none," enter the
character string (NONE).

7. Use the $CDATA control to pick up implicit data items in comment cards.

8. Use parentheses for comments, not periods (since they are reserved for
the data character).

E-1

________________ . IIII - I~ L. . . .

REFERENCE

E-1. Caine, Stephen H., Gordon, E. Kent, "PDL, A Tool for Software Design,"
Caine, Farber, and Gordon, Pasadena, California, 1975.

'

E-2

j .,J. 1 _ _ _I_ I I I' - . . . "

APPENDIX F

CODE-READING "STRUCTURED" FORTRAN PROGRAMS

Appendix F - Code-Reading "Structured" FORTRAN Programs

The following discussion defines how to "code-read" a FORTRAN program. It
documents and consolidates the actual procedures followed. Such a definition
should be useful in training personnel so that they know what to do when assigned
to "code-read" programs. It will also serve as a definition of the minimum type

of checking which can reasonably be expected by someone who is having code read.

The assumption is made that the program was developed according to this
document. This implies that a PDL (Program Design Language) document does exist
and that the FORTRAN used is the "pseudo-structured" FORTRAN defined in Appen-
dix D. The FORTRAN compilation is assumed to be that generated by Control Data
Corporation's FORTRAN Extended compiler. In addition to the FORTRAN compilation
and the PDL document, the "reader" should have available the program specifi-
cation, and file definitions if applicable.

A checklist which summarizes the types of checking done by a "code reader"
is included to provide a ready reference for actual "code-reading" assignments.

F
F-i

FORTRAN Code-Reading "HOW TO"

Check the Symbolic Reference Map for the one-to-one correspondence (i.e.,
I label reference and I label definition) between labels and references which
should exist if this STANDARDS document has been followed (exceptions are FORMATs
and the use of the CASE construct). The "ascending order" rule on labels is easy
to check at this point. Also check the map to determine if the compile is
"clean"; i.e., no undefined variables or non-dimensioned arrays appearing as
EXTERNALS. The EXTERNALS from the FORTRAN map can also be compared to those
listed in the PROLOGUE. Parameters defined as arrays in the PROLOGUE should be
listed as arrays in the map (even if they are just "passing through").

Read the PROLOGUE for understanding and make sure that what it contains is
consistent with the FORTRAN code implemented. Try to review it from the stand-
point of a potential user. Does the PROLOGUE give enough information for you to
make use of the routine? If not, point out what is lacking.

Step through the code comparing it to the PDL insuring that the code re-
flects what the PDL indicates. If it doesn't, note discrepancies. Although it's
not necessary to read "labels" to follow the code, be sure that branches do ref-
erence the correct label. Mentally execute the code with extreme or unusual
values to verify that the code is correct. Avoid the pitfall of relying on the
inline comments to convey what the code is doing instead of actually "reading"
the code.

When doing so, insure that executable statements have not been accidentally
"commented out" (which can be detected in the Symbolic Reference Map under
Statement Labels as labels with only one reference).

Note any comments wL.t:b are not clearly understood or computations which do
not clearly convey their iunction.

Make certain that any machine-dependent code or non-ANSI FORTRAN has been
flagged as such by the coder as well as by the compiler.

Insure that the variables used in the code are the FORTRAN equivalents of
the ones referenced in the PDL. Also, check the TYPEs of variables for consis-
tency. For example, is a variable described as an INTEGER actually read as an
INTEGER if FORMATs are involved? Variables containing Hollerith data especially
should be checked to make sure that they are declared as INTEGERs.

Check subroutine linkages. Make certain that the number of arguments is
consistent. Also check the TYPEs of the arguments and whether arguments should
be arrays. Where possible, check whether a COMMON variable passed as an argument
is being modified (as a COMMON variable) in the receiving routine.

'1 Reference the formulation to actually check equations and logic; use file
definitions to check FORMAT statements.

F-2

4.

Check the implementation of the "pseudo-structured" FORTRAN constructs. In
fact, it is helpful to note any non-adherence to Appendix D.

Although at the code-reading stage one must make a basic assumption that
the PDL is correct, one can still question logic. For instance, a test may in-
dicate "less than" and be in agreement with the PDL, but if "less than or equal
to" makes more sense to the reader, he should question it.

Sign or initial the code read so you can be questioned by the programmer
if your notations are not clearly understood.

As a follow-up activity, check with the programmer who has executed the
code which you "read" to see if you missed anything. In this manner your
repertoire of "code-reading" expertise can be immensely increased. Then if you
would care to share what you learn, please inform the authors so that this dis-
cussion may be expanded.

:

F-3 ,
i-

A6

FORTRAN CODE-READING CHECKLIST

1. Symbolic Reference Map

A. One-to-one correspondence between references and labels
B. "Ascending order" rule
C. EXTERNALS
D. Variables

2. PROLOGUE

3. PDL-versus-code review

4. TYPE (MCii) consistency

5. Subroutine linkage

6. Equations and logic versus formulation

7. FORMATs and lists versus file definitions

8. Comments

9. Machine-dependent or non-ANSI code

10. Adherence to standards

11. Sign-off code

F-4

DISTRIBUTION

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314 (12)

Defense Printing Service
Washington Navy Yard
Washington, DC 20374

Library of Congress
Washington, DC 20540
ATTN: Gift and Exchange Division (4)

GIDEP Operations Office
Corona, CA 91720

Naval Air Development Center
Warminster, Pennsylvania 18974
ATTN: Technical Library

Code 5033 (H. Stuebing)

Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, California 92152
ATTN: Code 9134 (R. Crabb) (I)

Code 9133 (L. McCoy) (1)

Naval Postgraduate School
Monterey, California 93940
ATTN: Code 52 CL (L. Cox)

Naval Research Laboratory
Washington, DC 20375
ATTN: Code 7503 (K. Heninger)

Naval Ship Research & Development Center
Bethesda, Maryland 20084
ATTN: Technical Library

Code 1828 (M. Culpepper)

Naval Training Equipment Center
Orlando, Florida 32813
ATTN: Technical Library

Code N-74

Naval Underwater Systems Center
Newport, Rhode Island 02840
ATTN: Code 4451 (R. Kasik)

DISTRIBUTION (Cont'd)

Naval Weapons Center
China Lake, California 93555
ATTN: Code 31302 (J. Zenor)

Navy Personnel Research & Development Center
San Diego, California 92152
ATTN: Code P204 (N. Underwood)

Charles Stark Draper Laboratory
68 Albany Street
Cambridge, Massachusetts 02139
ATTN: Mail Station 33

Division 40-B (2)

Compro, Incorporated
24 Marshall Place
Fredericksburg, Virginia 22401

EG&G
Washington Analytical Services Center, Inc.
P.O. Box 552
Dahlgren, Virginia 22448
ATTN: Technical Library (5)

FCDSSA, Dam Neck
/irginia Beach, Virginia 23461
ATTN: Code OOT

General Electric/Ordnance Systems
Electronic Systems Division
100 Plastics Avenue
Pittsfield, Massachusetts 01201
ATTN: Code ASA (2)

Code WCCAE (1)

GSG, Incorporated
51 Main Street
Salem, New Hampshire 03079
ATTN: Mr. Frank Hill

SDC Integrated Services, Incorporated
601 Caroline Street
Fredericksburg, Virginia 22401

Sperry Univac, Incorporated
Dahlgren, Virginia 22448

.. 'Kn '

DISTRIBUI~fON (Cont 'd)

USN Oceanographic Office
ATTN: Code 9220, Mr. Douglas S. Gordon
NSTL Station
Bay St. Louis, Mississippi 39522

DACS
RADC/ISISI
Griffiss APE, New York 13441

LOCAL:

E35
E41I

F02
FlO
F 16
F16 (Lemoine)
F20
F22
F24
F26
F28I
F44
F50
F56 (Prehoda)

GlO
Gl
G12 (Batayte)
G13 (Moore)

G42

K
K02
K05
KIO
K 105
K105 (Gemmill)
K11
K1 2
K13
K14
K14 (Clark)

-~ ~ ~* N

DISTRIBUTION (Cont' d)

K20
K30
K30 1
K304
K33 (10)
K34
K35
K40
K402
K41
K42
K43
K44
K50
K502

K51 (150)
K52 (5)
K53 (5)
K54 (5)
N14
N20
N20A
N22
N3 1
N32
N5 1
N52
N53

R44

U02
U12
U22
U23
U30
U3 1
U32

X210 (6)
X211 (2)

